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Abstract
Embedded systems provide critical services in numerous applications requiring 
complex functionality. The complex functionality is often implemented by 
complex software stacks, such as GNU/Linux. Since complex software often 
contains bugs, some of which might be exploitable by attackers, embedded systems
are exposed to security attacks. For instance, malicious software might be injected 
by exploiting a buffer overflow bug. In addition, the number of embedded systems 
connected to the Internet is increasing, enabling attackers to perform their attacks 
remotely and thus making embedded systems even more exposed to security 
attacks.

To address this issue, this thesis presents a software design and an implementation 
that host Linux with Internet support, such that only signed (non-malicious) Linux 
code is executed. The software design consists of three software components: A 
hypervisor and two guests, Linux and a monitor. These three software components 
can be executed on the development board BeagleBone Black, containing an 
ARMv7 CPU and a network interface controller (NIC). The hypervisor ensures 
that the three software components are securely separated and the monitor ensures 
that only signed Linux code is executed. The software design and the 
implementation take into account that Linux code might instruct the CPU to 
configure the NIC to access memory. This software design and implementation 
therefore ensure that the security service provided by the monitor is not breached 
by the NIC. In order to increase the reliability of this system, a pen-and-paper 
proof plan is presented with the purpose of guiding a formal proof of that only 
signed Linux code is executed in this system.

The original software design and implementation of the hypervisor, provided by 
the PROSPER project, did not have NIC support. The software design and the 
implementation of the hypervisor therefore have been extended with a security 
layer that intercepts writes to NIC registers that are performed by the CPU when it 
is executing Linux. If a NIC register write cannot enable unsigned (malicious) 
Linux code to be executed, the hypervisor lets the NIC register write take effect, 
and otherwise blocks it. In addition, the original software design of the monitor, 
also provided by the PROSPER project, did not consider the operation of the NIC. 
The design of the monitor therefore has also been extended in order to prevent 
memory configurations of Linux that enable unsigned Linux code to be executed. 
The proof plan describes and motivates how it can be formally proved in a theorem
prover that only signed Linux code is executed in this system. For the purposes of 
the proof plan, HOL4 models of the hardware have been identified and a formal 
model of the NIC has been specified in pseudocode.

If the work presented in this thesis is fully implemented and combined with earlier 
work from the PROSPER project, a networked embedded system is acquired in 
which, with high reliability, no malicious Linux code is executed.



Sammanfattning
Inbyggda system har ofta kritiska roller som kräver komplex funktionalitet. Denna 
funktionalitet implementeras ofta genom återanvändning av komplexa 
mjukvarustackar som exempelvis GNU/Linux. Då antalet buggar ökar med 
mängden kod och dess komplexitet, så finns det risk för att inbyggda system 
innehåller buggar, där vissa buggar potentiellt öppnar upp säkerhetshål. 
Exempelvis kan en buffertöverskridningsbugg möjliggöra installation av skadlig 
mjukvara. Därtill är det vanligt att inbyggda system är anslutna till Internet vilket 
gör inbyggda system än känsligare för säkerhetsattacker.

Denna uppsats beskriver en mjukvarudesign och dess implementation som ökar 
inbyggda systems tillförlitlighet. Implementationens syfte är att försäkra att endast 
signerad (icke-skadlig) Linuxkod exekveras. Mjukvarudesignen består av tre 
mjukvarukomponenter: En hypervisor och dess två gäster, Linux och ett 
kontrollprogram. Dessa tre komponenter kan exekveras på utvecklingskortet 
BeagleBone Black som har en ARMv7 processor och ett nätverkskort. Hypervisorn
försäkrar att de tre mjukvarukomponenterna är isolerade från varandra på ett säkert
sätt, och kontrollprogrammet försäkrar att endast signerad Linuxkod exekveras. 
Mjukvarudesignen och implementationen förhindrar processorn när den exekverar 
Linux från att konfigurera vilka minnesåtkomster nätverkskortet kan göra. 
Nätverkskortet kan därför inte förhindra kontrollprogrammet från att försäkra att 
endast signerad Linuxkod exekveras. För att öka detta systems tillförlitlighet så 
presenteras även en bevisplan som beskriver hur ett formellt bevis kan konstrueras 
för att endast signerad Linuxkod exekveras i detta system.

Den ursprungliga mjukvarudesignen och implementationen av hypervisorn, 
utvecklade i PROSPER projektet, hade inget stöd för nätverkskortet. 
Mjukvarudesignen och implementation av hypervisorn har därför utökats med ett 
mjukvarulager som anropas när processorn exekverar Linux och försöker skriva ett
nätverkskortsregister. Om skrivningen till nätverkskortsregistret inte kan 
möjliggöra exekvering av osignerad (skadlig) Linuxkod, så utför processorn 
skrivningen, och annars inte. Även den ursprungliga mjukvarudesignen av 
monitorn, också utvecklad i PROSPER projektet, tog inte hänsyn till 
nätverkskortet. Mjukvarudesignen av monitorn har därför också utökats för att 
försäkra att minneskonfigurationen är kompatibel med nätverkskortets 
konfiguration så att nätverkskortet inte möjliggör exekvering av osignerad 
Linuxkod. Bevisplanen beskriver och motiverar hur det kan bevisas formellt i en 
teorembevisare att endast signerad Linuxkod exekveras i detta system. Denna 
bevisplan baseras på en mängd HOL4 modeller och en formell modell av 
nätverkskortet som specificerats med pseudokod.

Om arbetet som presenteras i denna uppsats implementeras fullt ut och kombineras
med tidigare arbete som gjorts i PROSPER projektet, så erhålles ett uppkopplat 
inbyggt system som, med hög tillförlitlighet, endast exekverar signerad Linuxkod.
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1 Introduction
Embedded systems are widely adopted in today's society and encountered in many 
different sorts of devices and systems. Examples are smart wristwatches, 
surveillance systems, networking equipment, smartphones, tablets, smart TVs, 
fridges, medical devices, cars and financial transaction devices, but also more 
critical systems such as air and railway traffic control systems, nuclear power 
plants and defense systems.

The role of embedded systems and their ubiquity make them both critical and 
heavily exposed to attacks. Considering the kind of vulnerabilities that exist or 
have existed, and exploits that have occurred, security in embedded systems must 
be taken seriously as exemplified by the following articles and reports:

• A study [4] was made of the IT security of several hospitals in USA in 
2012. It was found that drug infusion pumps and defibrillators could be 
remotely accessed and cause danger to patients, and that digital medical 
records could be accessed and manipulated. Even though not all of these 
devices were directly connected to the Internet, many of them were 
connected to internal networks that in turn were connected to the Internet.

• It has been reported [5] that there are significant numbers of vulnerabilities 
in industrial control systems that control critical infrastructures. Several 
attacks of such systems have also been successful. For instance, customers 
of these systems have downloaded malicious software [6], a blast furnace 
in a steel plant was set in a dangerous state causing damage to the factory 
[7], and in a dam near New York hackers took control of the flood gates [8].

Several incidents have occurred in nuclear power plants [9]. One attack by 
a malicious program prevented personnel from viewing data of temperature
sensors and radiation detectors. This attack in combination with other 
weaknesses found in another nuclear power plant could result in disrupted 
system operation and in the disabling of sensors that indicate problems to 
personnel. Some attacks were also successful on systems that were 
physically isolated from the Internet.

• Modern cars are hackable advanced computer networks, where hackers can 
take control of cars to change the speedometer, activating and disabling the 
breaks, or turning the steering wheel [10, 11].

• An investigation of air traffic control security concluded that the Internet 
connectivity of modern airplanes can lead to unauthorized access to aircraft
software [12]. The reason is that the cockpit software is only isolated from 
the rest of the entertainment systems and the Internet by means of a 
firewall. If a hacker successfully compromises the firewall, the hacker can 
access the network that the cockpit software is connected to.

• Examples of malicious programs for smartphones can install new 
programs, delete files, and transmit personal data, including banking 
information, to remote servers [13, 14].
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In addition, the widespread use of embedded systems will probably only increase 
in the future. If hardware continues to evolve with additional CPUs and larger 
memory capacity, a single embedded system can be used to execute more 
applications concurrently and new applications that require higher performance. 
Also, if the Internet of Things continues to gain success, the increased connectivity
of embedded systems will increase and probably result in that embedded systems 
will be used in new environments. Cisco, Ericsson and Huawei predict that there 
will be more than 25 billion connected devices by 2020 [1-3]. The development of 
hardware and the Internet of Things will therefore probably make it more common 
that critical and non-critical applications will run on the same chip or on connected
chips. Hence, the attack surface of critical applications increases since the 
hardware they execute on can be affected by other applications, which might 
contain malicious code or bugs. For instance, in a car the software that handles the 
ABS brakes and the airbags might run on a chip that is connected to the Internet or 
run on the same chip as the entertainment software. The safety software might 
therefore be affected by potential bugs and malicious code injected in the 
entertainment software. Hence, the security for embedded systems must be taken 
even more seriously in the future.

In many embedded systems Linux is used as the operating system. For instance, 
Linux runs in all of the kinds of devices mentioned in the opening paragraph of this
chapter [15-27], and according to the Linux Foundation, Linux is the most widely 
used software in the world [28]. Some reasons for the widespread use of Linux in 
embedded systems are: its small memory usage; its support for CPU architectures 
and I/O devices; its support for multithreading and multiprocessors; its support for 
common network protocols and file systems; it is customizable to include only the 
features needed such as device drivers, networking protocols and file systems; its 
support for graphics and off-the-shelf applications that are often needed in 
embedded systems; it is free and open source; and many developers are familiar 
with Linux [88, 89]. Because of these properties of Linux, it is probable that Linux 
will be continued to be used in embedded systems in the future. However, one 
weakness of Linux is its large code size which probably means that Linux contains 
a number of bugs, some of which might be possible to exploit by hackers.

Embedded systems are also commonly implemented by means of ARM CPUs. 
ARM CPUs are commonly used in embedded systems because of their low power 
consumption, performance and price [90, 91]. In 2015, 15 billion chips with ARM 
processors were sold, giving ARM a market share of 32%. About 45% of these 
chips were in mobile devices, and the rest in other kinds of products such as 
networking infrastructure and safety systems in cars [29]. ARM CPUs are also 
designed for other applications, such as medical and industrial systems [30].

Considering (i) the current and predicted widespread use of embedded systems, (ii)
their connected and critical use, (iii) the kinds of successful attacks placed on them 
and the kinds of threats they are exposed to, and (iv) their common implementation
with Linux and ARM CPUs, it is relevant to improve the security in networked 
embedded systems that run Linux on ARM CPUs. Since a large part of the modern 
society uses embedded systems of this kind, such an improvement is of interest to a
large number of people.
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1.1 Prevention of Malicious Software in Linux on 
ARM Processors
The PROSPER project attempts to improve security in embedded systems by 
developing a software platform for embedded systems and formally verifying 
security related properties of this software platform. Current efforts of PROSPER 
are devoted to preventing execution of malicious software in an embedded Linux 
system with and ARM CPU and Internet access, and formally verifying this 
execution property. The use of formal verification gives a high trustworthiness of 
that no malicious software is executed. This execution property and the 
trustworthiness of its enforcement combined with the capability of Linux to run 
commonly used applications and being connected to the Internet, makes such a 
system both dynamic and reliable. Such a system is therefore attractive for many 
critical applications. So far PROSPER has developed, implemented, and formally 
verified a software design that ensures that only signed Linux code is executed in a
system consisting of one ARM CPU with memory without Internet access [86]. 
This work provides the foundation for this thesis and is introduced in this section, 
and is further described in Subsection 2.3.4.

The implementation of the software design targets the ARMv7 instruction set 
architecture (ISA), and involves the following three software components:

• A hypervisor executed in privileged mode. The hypervisor enables Linux 
and a monitor to be executed on top of it, and ensures that the executions of
these three software components cannot affect each others’ state insecurely.

• A Linux kernel that is paravirtualized (modified) to enable it to be executed
on top of the hypervisor in non-privileged mode. The Linux kernel and the 
applications running on top of it are untrusted in the sense that their code 
could have any malicious intention. For instance, a hacker might try to 
insert malicious code by means of a stack overflow attack to take control of
Linux.

• A monitor executed on top of the hypervisor in non-privileged mode. The 
purpose of the monitor is to ensure that only signed Linux code is executed.

All three software components have statically allocated and separated memory 
regions. Figure 1 illustrates the structure of this implementation. The two critical 
mechanisms of this design and implementation of ensuring that only signed Linux 
code is executed are the mechanisms ensuring (i) that the three software 
components are securely separated, and (ii) that all executable Linux code is 
signed. The mechanism providing the second property depends on the mechanism 
providing the second property. The first property is referred to as the separation 
property, and the second property is referred to as the execution property. The 
mechanism providing the separation property is described first and then the 
mechanism providing the execution property.

The hypervisor configures the memory management unit (MMU) to use a certain 
set of page tables. Those page tables are located in the memory region allocated to 
Linux but are mapped as read-only in non-privileged mode. Since the hardware can
only be configured in privileged mode and only the hypervisor is executed in 
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privileged mode, the MMU and the page tables can only be configured by the 
hypervisor. The hypervisor configures the page tables such that Linux and the 
monitor can only perform the memory accesses (read, write or execute) they are 
supposed to perform. When Linux or the monitor attempts access a memory 
location, the memory management unit (MMU) traverses the page tables to 
determine whether the access shall be accepted or rejected. If the page tables 
specify that the access shall be rejected, the MMU rejects the access. Hence, the 
secure separation between the hypervisor, Linux and the monitor relies on the 
MMU and the page tables.

Since Linux creates and terminates application processes and dynamically allocates
and deallocates their memory, Linux must be able to configure its virtual to 
physical address mapping. The software design that the hypervisor and the monitor
implement therefore specifies a set of functions (hypercalls) that allow Linux to 
configure its memory mapping. Those functions are referred to as the memory 
mapping request handlers. When Linux needs to configure its memory mapping, 
Linux invokes a memory mapping request handler, implemented both by the 
hypervisor and the monitor. The handler checks that the requested configuration of 
the page tables does not break the separation property nor the execution property. 
If the requested configuration preserves both properties, the request is executed 
and otherwise rejected.

When a handler is invoked, the hypervisor checks if the request breaks the 
separation property: If the request specifies a memory mapping that gives Linux 
access to memory belonging to the hypervisor or the monitor, or writable access to 
a page table, the request is rejected. Otherwise the request is forwarded to the 
monitor, which checks if the request breaks the execution property: If the request 
specifies unsigned Linux code to be mapped as executable, the request is rejected. 
To ensure that all executable Linux code is signed, the monitor accepts a request if 
and only if the request satisfies the following two conditions:
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Figure 1: Linux and the monitor executed on top of the hypervisor on an ARM 
CPU. The hypervisor is executed in privileged mode (PL1), while the monitor and 
Linux are executed in non-privileged mode (PL0). All three software components 
have their own statically allocated memory regions.
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• The request does not specify a memory mapping that maps a 4 kB physical 
memory block (the size of the smallest page frame) as both writable and 
executable.

• Each 4 kB physical memory block that is requested to be mapped as 
executable contains signed code. The monitor determines a block to contain
signed code if the digital signature of the contents of the block is in the 
golden image. The golden image is a set of signatures maintained by the 
monitor and represents the code that is considered non-malicious.

The first condition prevents Linux code from writing executable blocks, and the 
second condition ensures that blocks being mapped as executable initially have 
signed contents. The executable blocks therefore always have signed contents.

The monitor then provides its answer to the hypervisor. If the monitor accepts the 
request, the hypervisor executes it and otherwise rejects it. Figure 2 summarizes 
the interaction that occurs between the software components when Linux invokes a
memory mapping request handler. Note that the mechanism of ensuring that all 
executable Linux code is signed also relies on the MMU and the page tables.

Since malicious code injection attacks are commonly performed by means of 
sophisticated techniques, it is desirable to formally verify that only signed Linux 
code is executed at the ISA level. Such verification takes into account: the state of 
the hardware, how CPU instructions modify the hardware states, and therefore the 
interaction between the hardware and the software. Verification at the ISA level 
therefore establishes that only signed Linux code is executed with extraordinary 
reliability, and makes the system especially suitable for security critical 
applications. Verification at such a detailed level is the ambition of PROSPER, but 
so far only the design of the memory mapping request handlers has been verified. 
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Figure 2: The interaction between the software components when Linux invokes a 
memory mapping request handler. The first step consists of Linux invoking a 
memory mapping request handler to provide a request to the hypervisor that 
specifies how the memory mapping shall be configured. If the specified 
configuration gives Linux access to hypervisor or monitor memory, or writable 
access to a page table, the hypervisor rejects the request. Otherwise the second 
step is performed where the request is forwarded to the monitor. The monitor 
checks that the request does not enable execution of unsigned Linux code. In the 
third step the monitor provides its answer. If the monitor accepts the request, the 
hypervisor executes it and otherwise rejects it. In the last step the hypervisor gives 
the CPU to Linux, which then continues its execution.
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That is, how the handlers modify the hardware states, from the states from which 
Linux invokes the handlers to the states to which the handlers return and the 
execution of Linux continues. The verification of the handlers has been performed 
by means of the theorem prover HOL4 [86]. HOL4 is an interactive proof tool that 
can be used to formally prove properties of models of hardware and software. The 
verification is further described in Subsection 2.3.4.2.

Furthermore, the validation mechanism in the monitor can also be used to check 
other security policies than execution of signed code. Anti-virus analyzes can also 
be performed [86].

1.2 Problem Definition
Remaining work for PROSPER is to enable Linux to access the Internet on top of 
the hypervisor, and to prove that the binary code of the hypervisor and the monitor 
ensures that only signed Linux code is executed in such an environment. To enable 
Linux to access the Internet the hardware must be extended with a network 
interface controller (NIC) that allows Linux to send and receive messages. Such an
extended system is the focus of this thesis and is shown in Figure 3.

The NIC introduces one problem with respect to the design and the verification 
described in the previous section. The design and the verification depends on the 
MMU in the CPU. Since the NIC has a Direct Memory Access (DMA) controller, 
the NIC can read and write memory independently of the configuration of the 
MMU and the page tables. If the hypervisor does not appropriately supervise the 
accesses Linux makes to the NIC registers, Linux could configure the NIC such 
that the NIC stores received messages in memory blocks that store page tables, 
executable code, or that are allocated to the hypervisor or the monitor. Such 
memory writes can potentially give the control of the system to Linux and/or 
enable execution of unsigned Linux code. The introduction of a NIC therefore 
invalidates the software design and the verification result described in the previous 
section.
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Figure 3: The original system extended with a network interface controller (NIC). 
This system is the focus of this thesis.
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The memory mapping request handlers must therefore be extended and 
complemented with a set of functions that ensure that Linux does not configure the
NIC such that the NIC can break the separation or execution properties of the 
design. Those functions are referred to as the NIC register write request handlers. 
The remaining work for PROSPER therefore includes the following four tasks:

1. Extending the design of the memory mapping request handlers, and 
designing the NIC register write request handlers, such that they preserve 
the separation and execution properties.

2. Implementing the extended design of the memory mapping request 
handlers in the hypervisor and the monitor, and implementing the design of
the NIC register write request handlers in the hypervisor.

3. Extending the hypervisor and Linux to enable Linux to access the Internet 
when Linux is executed on top of the hypervisor.

4. Formally verifying that the binary code of the hypervisor and the monitor 
ensures that only signed Linux code is executed.

This thesis focuses on the solutions to tasks one and three and partly tasks two and 
four. The following components have been used as the starting point:

• The development board BeagleBone Black (BBB) [31] which provides an 
ARMv7 CPU and a NIC.

• The hypervisor described in the previous section, but which has no network
support.

• A paravirtualized Linux 3.10 kernel that can be executed on top of the 
hypervisor, but which has no support for Internet access.

• The design of the memory mapping request handlers [86] described in the 
previous section.

By using these components, the problem definition is to provide the following:

1. An extension of the design of the memory mapping request handlers and a 
design of the NIC register write request handlers, such that the hypervisor, 
the monitor and Linux are securely separated and only signed Linux code is
executed.

2. An implementation of the NIC register write request handlers in the 
hypervisor.

3. An extension of the hypervisor and Linux such that Linux can access the 
Internet when Linux is executed on top of the hypervisor.

4. A proof plan that describes how it can be formally proved in HOL4 that the 
binary code of the hypervisor and the monitor ensures that only signed 
Linux code is executed.

In order to make the result usable for PROSPER, the proof plan shall be 
based on the device model framework [85]. The device model framework is
a model implemented in HOL4 and is partly developed by PROSPER. It is 
described in Subsection 2.4.1.
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1.3 Method
The solutions to the four problems listed in the problem definition are described in 
this Section. To ensure that Linux does not configure the NIC to operate insecurely,
the registers of the NIC are mapped as read-only in non-privileged mode. Since the
NIC does not perform side effects on register reads, this mapping prevents Linux 
from directly configuring the NIC. When Linux attempts to write a NIC register, 
the CPU takes an exception which causes the NIC handling code to run. That code 
checks which NIC register Linux attempted to write with which value, and calls 
the NIC register write request handler that handles writes to that register with the 
value Linux attempted to write. The handler checks that the requested register 
write does not cause the NIC to write memory blocks that contain page tables, 
executable code, or that belong to the hypervisor or the monitor. If the register 
write satisfies these conditions, the register write is re-executed and otherwise 
blocked. The design of the memory mapping request handlers is extended with 
checks that ensure that blocks that the NIC can write are not used to store page 
tables or executable code. These checks performed by these two sets of handlers 
ensure that the hypervisor, the monitor and Linux are securely separated, and that 
executable blocks containing Linux code have signed contents.

The design of the NIC register write request handlers is specified in pseudocode to 
give it a clear structure and accurate meaning. To ease the implementation of the 
proof plan in HOL4, which depends on the design of these handlers, the 
pseudocode notation is defined to be similar to the HOL4 syntax.

The design of the NIC register write request handlers is implemented in the data 
abort exception handler of the hypervisor. The hypervisor can therefore call the 
handlers when Linux attempts to write a NIC register. Since the NIC register write 
request handlers are invoked by means of exceptions, it is not necessary to modify 
the NIC driver in the Linux kernel, which would be necessary if they were invoked
by means of hypercalls.

Since the given paravirtualized Linux kernel was not configured with Internet 
support, its configuration had to be extended to include the necessary networking 
code. The networking code caused attempts to execute privileged operations 
related to cache and branch prediction management. These operations failed since 
Linux is executed in non-privileged mode. A practical solution was to implement 
these privileged operations in C as hypercalls in the hypervisor by following their 
corresponding assembly code implementation in the Linux kernel. Invocations to 
these hypercalls were then inserted at the corresponding locations in the Linux 
kernel.

To describe how it can be formally proved in HOL4 that only signed Linux code is 
executed, the proof plan must reason about the executions performed by the CPU 
and the NIC, and their interactions through accesses to the NIC registers and the 
memory. Those executions and interactions can be described by the device model 
framework, the models of the ARMv7 ISA and the MMU, and by a suitable model 
of the NIC. A suitable model of the NIC must match the I/O device interface of the 
framework, and it must describe all memory accesses that the NIC performs 
according to how the NIC device driver in Linux configures the NIC. Since no 
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such model existed, one is provided in the same pseudocode notation that is used to
specify the design of the NIC register write request handlers. The specification of 
the NIC model in pseudocode, the similarities between the syntaxes of the 
pseudocode and HOL4, and the interface of the NIC model make it straightforward
to implement the NIC model in HOL4 and integrate it with the framework. The 
integration of the framework with a HOL4 implementation of the NIC model 
forms a HOL4 model that describes the executions of the relevant hardware that 
executes the hypervisor, the monitor and Linux. The proof plan reasons about that 
HOL4 model by means of the labeled transition system notation described in 
Subsection 2.1.2.

The proof plan is based on the simulation proof method: It is first proved that the 
software design ensures that only signed Linux code is executed, and then proved 
that this property can be transferred to the system executing the binary code of the 
hypervisor and the monitor. The proof plan consists two sets of lemmas, called the 
top- and sub-level lemmas, and a description of how the lemmas are applied to 
prove that only signed Linux code is executed. All lemmas are motivated by a 
description of why they hold, or if the lemmas involve unknown implementation 
aspects, it is described how the lemmas can be proved. The top-level lemmas are 
formulated as logical formulas and reflect the main ideas in the proof plan, while 
the sub-level lemmas support the top-level lemmas by considering deeper details.

This structure of the proof plan provides a holistic view of the proof approach 
while still taking details into account. The consistency between the notations of 
transition systems, the pseudocode and the logical formulas allow the proof plan to
seamlessly reason about the hardware and the software design, which makes the 
proof plan relatively formal and precise. This precision together with the 
motivations of the lemmas make the proof plan believable. The reuse of the 
software design, and the formality and the soundness of the proof plan, make the 
proof plan especially suitable to guide an implementation of a formal proof in 
HOL4 of that only signed Linux code is executed.

1.4 Contributions and Conclusion
The solutions to the problems listed in the problem definition contribute in three 
respects to ensure that only signed Linux code is executed in an embedded system 
with network access:

• Software design: A specification that describes how the hypervisor and the 
monitor can ensure that only signed Linux code is executed.

• Implementation: An implementation of the networking aspects of the 
software design.

• Verification of correctness: A description of how it can be formally proved 
that the hypervisor and monitor implementation of the software design 
ensures that only signed Linux code is executed.

More specifically, the contributions are:
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• A formal description of which conditions related to the NIC that the 
memory mapping request handlers must check in order to ensure that only 
signed Linux code is executed.

• A specification in pseudocode of the NIC register write request handlers 
that describes how the hypervisor can give Linux access to the NIC, such 
that the NIC cannot enable the execution of unsigned Linux code.

• An implementation of the NIC register write request handlers in the 
hypervisor.

• An extension of the hypervisor and the paravirtualized Linux kernel that 
enables Linux on BeagleBone Black to access the Internet.

• Benchmark results of network performance that illustrate the overhead of 
the implementations mentioned in the previous two bullets.

• A formal model of the NIC on BeagleBone Black that describes how the 
NIC accesses memory and asserts interrupts. The model describes these 
operations to the extent that they are used by the device driver of the NIC in
Linux 3.10. The NIC is modeled as a transition system where each 
transition corresponds to one operation that accesses one field or byte of a 
NIC register or the memory. The model of the NIC is specified in 
functional pseudocode syntax to ease an implementation of it in HOL4.

• An identification of a set of HOL4 models which can be integrated with a 
HOL4 implementation of the NIC model to form a computer model in 
HOL4. That computer model describes the execution of a computer 
consisting of an ARMv7-A CPU, a memory and the NIC on BeagleBone 
Black. The resulting model is a transition system that describes the 
interaction between these hardware components, and between these 
hardware components and the software executed on top of it. The transition
system consists of all possible interleavings of CPU and NIC transitions, 
where one CPU transition corresponds to the execution of one CPU 
instruction.

• A relatively formal and detailed pen-and-paper proof plan that describes 
how it can be formally verified that the binary code of the hypervisor and 
the monitor ensure that only signed Linux code is executed. This proof plan
is based on the computer model mentioned in the previous bullet and the 
design of the memory mapping and NIC register write request handlers 
mentioned in the first two bullets. The verification of that only signed 
Linux code is executed does not only include Linux applications but also 
the kernel, device drivers and modules loaded on demand.

If the current implementation of the memory mapping request handlers is extended
to consider the operation of the NIC, and the model of the NIC and the proof plan 
are implemented in HOL4, then an embedded system running Linux with Internet 
access is acquired, BeagleBone Black, such that, with high reliability, no malicious
code in Linux is executed.
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1.5 Outline of the Thesis
The rest of the thesis is structured as follows. Chapter 2 presents background 
material that allows an uninitiated reader to understand this thesis.

Chapters 3 through 6 describe the solutions to the four problems listed in the 
problem definition. Chapter 3 addresses the first problem: It describes the design of
the extended memory mapping request handlers and the NIC register write request 
handlers. Chapter 4 addresses the second and the third problems: How the NIC 
register write request handlers are implemented and how Linux is given Internet 
access. Chapters 5 and 6 address the last problem: Chapter 5 describes the models 
used in the proof plan, and Chapter 6 presents the proof plan.

Chapter 7 motivates why the work described in Chapters 3 through 6 fulfills the 
requirements in the problem definition. Chapter 8 discusses from several 
perspectives which potential impacts the work described in this thesis can have.

Several appendices are also included. Their purpose is to present the fundamental 
details for the interested reader and guide future work. Appendix A describes the 
pseudocode notation used to specify the software design of the NIC register write 
request handlers and the model of the NIC. The pseudocode specifications of these 
handlers and the NIC model are partly included in Appendices B and C, 
respectively. Appendix B also contains a formal description of the extended 
memory mapping request handlers. To ease the understanding of the models used 
in the proof plan, Appendix D provides an example of an execution trace that is 
included in the model that describes how the hardware executes. Finally, 
Appendices E and F provide details that are part of the proof plan. Appendix E 
formally defines and describes the security invariant that is used in the proof plan 
to prove that the software design is secure. Appendix F motivates the sub-level 
lemmas.
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2 Background
This chapter explains the notation used in this thesis, what formal verification is, 
the system environment Linux runs in, and earlier work that this thesis is based on. 
Related research is also described to put the work presented in this thesis in a wider
perspective, and present tools and methods that might be helpful to formally prove 
that only signed Linux code is executed.

2.1 Notation
Appendix A describes the pseudocode notation that is used to specify the NIC 
register write request handlers in Appendix B and the NIC model in Appendix C. If
the reader is not interested in those specifications, the notation described in this 
section is sufficient to understand the rest of the thesis, except for minor details 
that are explained when encountered for the first time.

2.1.1 Notation for Functions

Functions are defined by means of the definition symbol ' '.≝

Logical formulas are formed by ordinary logical and mathematical symbols with 
their classical meaning: ¬, , , , , , , , , . These symbols represent ∧ ∨ ⇒ ∀ ∃ ∈ ⊆ ∪ ⨯
boolean negation, conjunction, disjunction and implication; for all and there exists 
quantifiers; element of, subset of, union of and direct product of sets. ¬ binds 
tighter than , which binds tighter than , and which binds tighter than . '[' and ∧ ∨ ⇒
']' are used as parentheses in logical formulas in order to ease the interpretation of 
their scope. '(' and ')' are mainly for function application.

A component of a tuple is referred to by the name of the tuple and the name of the 
component separated by a dot. For instance, if a = (b, c), then the component b of 
a is referred to as a.b.

2.1.2 Notation for Labeled Transition Systems

The reasoning in the proof plan is based on a set of models, which describe the 
execution of hardware components. These models describe the executions as 
transition systems, and are therefore described in this thesis by means of a labeled 
transition system notation. In order to understand the models and the proof plan 
must the meaning of this labeled transition system notation be understood.

A labeled transition system consists of a four tuple LTS = (S, IS, L, δ), where:

• S is the set of states in the transition system.

• IS is the a set of initial states in the transition system.

• L is the set of labels that the transitions in the transition system have.

• δ  ⊆ S⨯L⨯S is the transition relation of the transition system and consists 
of all transitions in the transition system. If (s, l, t)  ∈ δ, then it means that 
there is a transition in the transition system from the state s to the state t 
with the label l. This is also written as s →l t.
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The transition relations used in this thesis are defined by means of transition rules. 
A transition rule has the following form:

P
––––––.
s →l t

The meaning of a transition rule is: If the premise P is true, then s can transition 
into the state t and the transition has the label l.

The following example clarifies the concept of a transition system and its notation. 
Consider the following set of transition rules, where each state consists of a pair of 
natural numbers:

• The following rule means that the state states (0, 0) and (0, 1) can transition
into the states (0, 1) and (0, 2), respectively, where the labels of the 
transitions are l_1:

(a = 0  ∧ b = 0)  (∨ a = 0  ∧ b = 1)
–––––––––––––––––––––––––––.

(a, b) →l_1 (0, b + 1)

• This rule means that the state (0, 0) can transition into the state (1, 1) with 
the label of the transition being l_2:

a = 0  ∧ b = 0
–––––––––––––.
(a, b) →l_2 (1, 1)

These transition rules are used to define the transition relation δ in the transition 
system LTS = (S, IS, L, δ) as follows:

• TS.S {(0, 0), (0, 1), (0, 2), (1, 1)}≝

• TS.IS {(0, 0)}≝

• TS.L {≝ l_1, l_2}

• TS.δ {((0, 0), ≝ l_1, (0, 1)), ((0, 1), l_1, (0, 2)), ((0, 0), l_2, (1, 1))}. These 
are the transition that are generated by the two transition rules listed above.

Two execution traces in this transition system are:

• (0, 0) →l_1 (0, 1) →l_1 (0, 2), and

• (0, 0) →l_2 (1, 1).

Also, this transition system is non-deterministic since there are two different 
transitions from the state (0, 0).

2.2 Formal Verification
To understand some design decisions and the verification approach of the system 
that hosts Linux, it is appropriate to start with an introduction to some common 
methods that are used to formally verify this kind of system. In this thesis, formal 
verification is referred to as the process of proving properties about abstract 
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objects, called models, by means of mathematics, and where the proofs are 
machine-checked by a computer program. In the context of this thesis, the models 
describe behavior of software and hardware. Since mathematics is unambiguous 
and the proofs are checked by a computer program, the possibility of proving false 
properties is minimized. This gives a high reliability of that an implemented 
system actually has a proven property and which in principle proves the absence of
bugs with respect to the proven property. Formal verification is therefore desirable 
to use in the development of critical applications.

Formal verification does not establish that a system has a proved property with 
complete certainty since there are verification gaps. For instance, discrepancies 
between the system and the model:

• If the system to analyze is complex and the model of it is hand-made, there 
is a significant risk for bugs in the model.

• The model might be too abstract and not reflect all the system behavior that
the property depends on.

• Bugs in the implementation of the system might cause the system to not 
follow its specification, and where the specification has been used to 
construct the model.

It might therefore be possible to prove a property on the model that the system 
does not have. It is therefore critical that the model that describes the system is 
correct. The more accurate the model is, the more reliable is the formal proof to 
imply that the system has the proved property. An additional verification gap is the 
proof tool. Potential bugs in the proof tool might cause the proof tool to accept 
incorrect proofs.

Hardware and software can be modeled in several different ways. For instance, 
hardware components that just output a value given an input value can be modeled 
as ordinary mathematical functions, while executable systems that transition 
between states are suitably modeled as transition systems, as depicted in Figure 4. 
Models can be implemented either in the language that the proof tool uses to read 
its input, or in a separate specification language that is compiled to the input 
language of the proof tool.

Some commonly used tools to formally verify software or hardware are:
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Figure 4: A graphical representation of two models. The model to the left 
represents a mathematical function, and the model to the right represents a 
transition system.
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• Static analyzers: Commonly verify program properties. For instance, 
computational correctness, termination conditions, presence of unreachable 
code, and absence of division by zero.

One sort of static analyzers verify annotated source code programs. The 
user annotates the program with logical formulas at certain control points, 
with the meaning that the property encoded by the formula holds at that 
control point for all program executions. The tool attempts to verify that all 
logical formulas hold at their corresponding control points. Verification of 
annotated source code does not need any user provided models, but verifies
only that the program is correct with respect to the encoded formulas and 
the definition of the programming language. Hence, no compiler bugs are 
captured. Also, the operation of the hardware is not analyzed, which might 
be desirable for verification of programs that interact with I/O devices.

• Model checkers: Take as input a model, and a logical formula encoding a 
property. The tool attempts to automatically verify that the model satisfies 
the formula. A problem with model checkers is that complex models might 
require the verification process to traverse a large number of states, causing
a potential state-space explosion. This potential state-space explosion may 
require memory that is not available in a regular computer/server, making 
this verification approach infeasible for complex systems. [36]

• Theorem provers: Allow users to construct a formal proof of that a property
holds on a model. The tool checks that the user only performs sound steps 
in the construction of a proof. It also assists the user by automatically 
proving certain steps, providing tools that the user can use to organize the 
proof, and recording which steps that remain to be proved. Theorem 
provers are flexible in the sense that they allow the user to reason about 
complex systems with complex properties, but are time consuming in the 
sense that models must be constructed and users are required to perform a 
significant amount of work to construct a proof.

There are several books covering some of these tools and their usage [34-36].

2.3 The System
The system that hosts Linux consists of an ARMv7 CPU, a memory, a NIC, a 
hypervisor and a monitor. These hardware and software components are described 
in the following subsections.

2.3.1 ARMv7 Instruction Set Architecture

The CPU implements the 32-bit ARMv7 instruction set architecture (specifically, 
ARMv7-A [33]). The CPU executes in either privilege level zero (PL0) or 
privilege level one (PL1): PL0 for non-privileged application software that must 
not have access to system resources, and PL1 for privileged operating system (OS) 
software that controls system resources. There are seven execution modes, called 
usr, fiq, irq, svc, und, abt and sys. usr mode is the execution mode for applications 
and executes in PL0, while the other modes are the execution modes for the OS 
and execute in PL1. The CPU transitions from usr mode to fiq, irq, svc, und or abt 
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mode only when an exception is taken, and sys mode is only entered manually by 
the OS from fiq, irq, svc, und or abt mode.

When an exception is taken, the CPU sets the program counter to a preconfigured 
value and enters fiq, irq, svc, und or abt mode. The new value of the program 
counter addresses a memory location where the OS is stored, causing the OS to be 
executed and handle the exception. When the OS has handled the exception, it 
instructs the CPU to load its registers with the state of the next application to 
execute and to transition to usr mode. The execution of that application then 
continues.

The exceptions that can occur on an ARMv7 CPU are:

• FIQ and IRQ interrupts: Cause the CPU to enter fiq and irq modes, 
respectively. These exceptions are raised by I/O devices. fiq mode is 
entered when high-priority devices assert interrupts (Fast Interrupt 
reQuest), and irq mode is entered when low-priority devices assert 
interrupts (Interrupt ReQuest). In the system setting that this thesis focuses 
on, only the NIC can assert interrupts, and in particular IRQ interrupts.

• Supervisor call exceptions: Cause the CPU to enter svc mode. These 
exceptions are raised when executions of application software execute a 
supervisor call instruction to invoke a system call of the OS.

• Undefined instruction exceptions: Cause the CPU to enter und mode. These
exceptions are raised for instance when the CPU attempts to execute an 
undefined instruction.

• Prefetch and data abort exceptions: Cause the CPU to enter abt mode. 
These exceptions are raised for instance when the CPU attempts to fetch an 
instruction or access data at a memory location to which no access is 
currently allowed, respectively.

The OS can distinguish between prefetch and data abort exceptions since 
the program counter is set to 0xFFFF000C for prefetch abort exceptions 
and to 0xFFFF0010 for data abort exceptions.

The CPU has 16 general-purpose registers, which include the stack pointer, the link
register (used to store the return address for function calls), and the program 
counter. Some of these registers are banked between several execution modes, 
meaning that some execution modes have their own copies of these registers. The 
CPU contains also several system registers, some of which configure the hardware.
Figure 5 shows the relation between privilege levels, execution modes and 
registers in an ARM CPU.

The relevant system registers in this thesis are:

• CPSR: The current program status register affects the execution of the 
CPU. Among other things, CPSR contains condition code flags that 
determine the outcome of conditional branch instructions, which execution 
mode the CPU is in, and whether interrupts are enabled or not. Bits seven 
and six of CPSR determine whether the CPU responds to IRQ and FIQ 
interrupts, respectively. If these bits are set, the CPU ignores the 
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corresponding interrupt. That is, if the bits are set, the interrupts are 
masked.

• SPSR: The saved program status registers are used by the CPU to store the 
value of the CPSR register when the CPU takes an exception. Each 
execution mode that can be entered by an exception has its own SPSR 
register (see Figure 5). Immediately before the CPU takes an exception, the
CPU stores the value that CPSR contains, into the SPSR register that is 
accessible to the execution mode that is entered after the exception has 
been taken. For instance, if an IRQ interrupt occurs, immediately before the
CPU takes that exception, the CPU stores the value of CPSR in SPSR_irq.

By reading SPSR, the OS can restore the value of CPSR after an exception 
has been handled to the value CPSR contained before an exception was 
taken. It is necessary for the OS to be able to restore CPSR since CPSR 
affects the execution of applications and the OS might modify CPSR. For 
instance, when the CPU is executing an if-then-else statement of an 
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Figure 5: The relation between privilege levels, execution modes and registers in 
an ARM CPU. usr mode has only access to 16 general-purpose registers and the 
condition code flags of the CPSR register. Each privileged execution mode has 
access to most of the registers that are accessible in usr mode, but with some of 
those registers replaced by registers that are only accessible in that privileged 
execution mode. The registers that are only accessible in a specific privileged 
execution mode have their names appended by an underscore followed by the 
name of that execution mode. The registers r13, r14 and r15 of each execution 
mode are the stack pointer, link register and program counter, respectively. All 
execution modes that can be entered by an exception have their own copy of the 
SPSR register. Also, only the privileged execution modes have access to the system 
registers. Examples of system registers are CPSR, TTBR0 and DACR, which affect 
the operation of the hardware, and SPSR and DFAR, which do not affect the 
operation of the hardware.
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application, which might affect the condition code flags, the CPU can take 
an exception. When the OS is executed to handle the exception, the CPU 
might execute an if-then-else statement of the OS, causing the condition 
code flags to change. CPSR must therefore be restored to allow the 
continued execution of the application to be correct.

• TTBR0: The translation table base register zero contains the physical 
address of the memory location that contains the first entry of the first-level
page table. This register is used by the MMU and its role is described 
below.

• DACR: The domain access control register is used in combination with 
page table entries to compute access permissions of virtual addresses. It 
consists of 16 fields of two bits each, where each field is identified by an 
index value from zero to fifteen. Each first-level page table entry contains 
one such index value. The two bits in the field of the DACR register with 
that index determine how the access permissions are computed for virtual 
addresses that are mapped by that page table entry (see Figure 6; the page 
tables are described below). The meaning of the bits in the fields of the 
DACR register is:

◦ 0b00: No access.

◦ 0b01: Access permissions are determined by the page tables.

◦ 0b10: Invalid encoding (unused).

◦ 0b11: Allowed access.
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Figure 6: The relation between a first-level page table entry (PTE) and the DACR 
register. Bits 8 to 5 in a first-level page table entry contains the index value to the 
field of the DACR register that is used to determine how access permissions are 
computed. The binary index value of the shown page table entry is 0010, which 
identifies the third field of the DACR register. That third field of the DACR register
contains the binary value 01. Hence, the access permissions of the virtual 
addresses mapped by this page table entry are specified by the page tables. If bits 
5 and 4 of DACR contained 00, no access would be allowed to those virtual 
addresses, and if bits 5 and 4 contained 11, all accesses to those virtual addresses 
would be allowed. If this page table entry maps 1 MB of memory, the access 
permissions are encoded in bits 15, 11 and 10 of this page table entry. If this page 
table entry points to a second-level page table, the access permissions are encoded
in the second-level page table entry that maps the accessed virtual address.
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• DFAR: The data fault address register contains the virtual address that the 
CPU attempted to access but which caused a data abort exception. For 
instance, if the CPU attempted to write a non-writable virtual memory 
location at virtual address 0xFA400000, then DFAR contains 0xFA400000.

The CPU accesses a memory location or a register of an I/O device by specifying a
virtual address. Given a virtual address, the MMU, a part of the CPU, performs a 
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Figure 7: The relationship between the virtual address space and the physical 
address space. The CPU uses virtual addresses to access memory and registers of 
I/O devices, while the latter are located in the physical address space. In this 
example, the physical address space contains memory and registers of two I/O 
devices, leaving the rest of the physical address space unused. The MMU reads a 
set of page tables in memory to translate a virtual address to a physical address. 
Two page tables, referred to as PT1 and PT2, are shown in the memory. When the 
MMU translates a virtual address, the MMU first reads the first-level page table 
whose physical base address is located in TTBR0. In this example, PT1 is the first-
level page table. To translate the virtual address 0x4019A620, PT1 specifies that 
the MMU shall read PT2 (hence the arrow from PT1 to PT2), which is a second-
level page table. Since PT1 and PT2 specify that the virtual address 0x4019A620 
shall be mapped to the physical address 0x80BC5620, the MMU outputs the 
physical address 0x80BC5620 when given the virtual address 0x4019A620. Hence,
the CPU accesses the physical address 0x80BC5620 when specifying the virtual 
address 0x4019A620. Since the physical address 0x80BC5620 identifies a memory 
location, the CPU accesses memory when specifying the virtual address 
0x4019A620.
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translation table walk that traverses one or two page tables located in memory. The 
page tables specify how the MMU shall compute the access permissions (read, 
write or execute) and the physical address of a given virtual address. If the 
computed access permissions are compatible with the requested access, the CPU 
accesses the memory location or the register of an I/O device located at the 
physical address, if the hardware is configured correctly. The relationship between 
the virtual addresses, the MMU, the page tables and the physical addresses is 
illustrated in Figure 7.

The page tables are organized into two levels as follows (there are also other 
organizations but they are not relevant for this thesis):

1. First-level page tables contain 1024 entries. Each entry is either free, maps 
1 MB of virtual memory to 1 MB of physical memory (256 consecutive 4 
kB memory blocks), or points to a second-level page table.

2. Second-level page tables contain 256 entries. Each entry is either free or 
maps 4 kB of virtual memory to 4 kB of physical memory.

Given a virtual address, the MMU performs a translation table walk as follows (as 
is also illustrated in Figure 8). The MMU first reads the TTBR0 register to find the 
first-level page table. Bits 29 to 20 of the virtual address are then used as an index 
to that page table to identify the first-level page table entry that maps the given 
virtual address (bits 31 and 30 are handled in a special way that can be skipped in 
this description):

• If the entry is free, a data abort exception is raised. A free entry means that 
the virtual memory region that the virtual address belongs to is unmapped 
and inaccessible.

• If the entry maps a 1 MB memory region, the entry contains the physical 
base address of that memory region, an index to a field of the DACR 
register, and the access permissions of the given virtual address. The MMU 
adds bits 19 to 0 of the virtual address to the physical base address of the 1 
MB memory region to compute the physical address that the given virtual 
address is mapped to.

• If the entry points to a second-level page table, it contains the physical 
address of the first entry of that second-level page table, and an index to a 
field of the DACR register. Bits 19 to 12 of the virtual address are then 
used as an index to this second-level page table to identify the second-level 
page table entry that maps the given virtual address. If the second-level 
page table entry is free, a data abort exception is raised.

Otherwise the second-level page table entry maps a 4 kB memory region, 
and contains the physical base address of that memory region together with 
the access permissions of the given virtual address. The MMU adds bits 11 
to 0 of the virtual address to the physical base address of the 4 kB memory 
region to compute the physical address of the given virtual address.
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Figure 8: How the MMU performs a translation table walk to map a virtual 
address to a physical address. The MMU uses the TTBR0 register to find the first-
level page table. A first-level page table consists of 1024 entries where, in this 
example, the first entry is free (such an entry is called Invalid by ARM), some 
intermediate entry points to a second-level page table, and the last entry points to 
a memory region of 1 MB (called Section). The second-level page table consists of 
256 entries, where the first and last entries are free and one intermediate entry 
points to a memory region of 4 kB (called Small page). To map a virtual address, 
the MMU traverses either only one first-level page table, or one first-level page 
table and then one second-level page table. The physical address of the first-level 
page table entry that maps a given virtual address is computed by adding bits 29 to
20 of the virtual address to the contents of TTBR0. If the first-level page table 
entry points to a 1 MB memory region, the physical address that the virtual 
address is mapped to is computed by adding bits 19 to 0 of the virtual address to 
the physical address of that memory region. The CPU then accesses the location in
the physical address space with the computed physical address, if allowed by the 
access permissions that are computed during the translation table walk. If the first-
level page table entry points to a second-level page table, the physical address of 
the second-level page table entry that maps the given virtual address is computed 
by adding bits 19 to 12 of the virtual address to the physical address of the second-
level page table. The second-level page table entry points to a 4 kB memory 
region. The physical address that the virtual address is mapped to is computed by 
adding bits 11 to 0 of the virtual address to the physical address of the 4 kB 
memory region. The CPU accesses the location in the physical address space 
identified by the computed physical address, if the access permissions allow.
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The translation table walk allows the MMU to identify the physical address and the
access permissions of a given virtual address. The granularity of the access 
permissions is with respect to the privilege level of the CPU (PL0 or PL1), where 
the access permissions are readable, writable and executable.

If the value of the field of the DACR register and the access permissions identified 
by the page table entries are compatible with the current privilege level of the 
CPU, the CPU accesses the location in the physical address space that is identified 
by the computed physical address. If a virtual address identifies an instruction, the 
page table entry mapping that virtual address must map the virtual address as both 
readable and executable in order for the CPU to execute the instruction.

If the access permissions are violated, a prefetch or data abort exception is raised, 
causing the CPU to take the corresponding exception and execute privileged 
software to handle it. When instruction fetches (to execute an instruction) violate 
access permissions, prefetch abort exceptions are raised, and when data memory 
accesses violate access permissions, data abort exceptions are raised.

2.3.2 Network Interface Controller

The purpose of the NIC [32] is to transmit and receive messages, which are called 
frames. Software configures the NIC to transmit and receive frames by performing 
the following steps:

1. Resetting the DMA hardware and initializing certain registers.

2. Initializing the buffer descriptors that inform the NIC where in memory it 
shall fetch and store frames.

3. Writing the registers that start transmission and enable reception.

4. Acknowledging interrupts that the NIC generates when it has completed 
transmission or reception of frames.

5. Tearing down transmission and reception when the NIC is to be shut down. 
This is normally done when the computer is shut down or put into sleep 
mode.

There are a number of registers that affect which memory accesses the NIC 
performs. All of those registers must be protected by the hypervisor to prevent 
Linux from taking control of the system and the CPU from executing unsigned 
Linux code. Linux uses nine of the NIC registers that affect which memory 
accesses the NIC performs. The location of eight of those registers in the physical 
address space is shown in Figure 9. The ninth register, RX_BUFFER_OFFSET, is 
only written by Linux during initialization, and is described in Section C.1. The 
following five subsections describe the five steps listed above and how the eight 
registers shown in Figure 9 are used.

2.3.2.1 Resetting DMA Hardware

Before the NIC starts transmission and reception must the DMA hardware be reset.
The NIC specification [32] does not specify what this reset operation does, but by 
observing the behavior on BBB, it seems that the reset operation only puts the NIC
in an inactive state without doing anything else (e.g. resetting some registers). The 
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DMA hardware is reset by software by setting the least significant bit of the 
CPDMA_SOFT_RESET register. When the reset operation is complete, the NIC 
clears this bit. The reset register is relevant for memory accesses because, 
according to the NIC specification, the DMA hardware must be reset before 
transmission and reception start, both of which affect memory accesses.

2.3.2.2 Initializing Buffer Descriptors

Before transmission and reception can start, the NIC must know where the data 
buffers used to store frames are located. That information is given to the NIC by 
means of a set of buffer descriptors. Each buffer descriptor consists of four 32-bit 
words and is stored in an 8 kB memory in the NIC called CPPI_RAM. A buffer 
descriptor consists of several fields where the most important are (Figure 10 
illustrates the use of these fields and their roles by means of an example):

• Next Descriptor Pointer: Points to another buffer descriptor to allow the 
construction of transmit and receive queues. If it has the value zero, the 
buffer descriptor is the last one in the queue.

• Buffer Pointer: Points to a memory location to specify where the addressed 
data buffer of the buffer descriptor starts.

• Buffer Length: Specifies the size of the addressed data buffer in bytes.
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Figure 9: The location of the NIC registers and RAM in the physical address space
of BeagleBone Black. The NIC registers constitute 16 kB of the physical address 
space and starts at address 0x4A100000. This is the shaded region. The RAM 
constitutes 512 MB of the physical address space and starts at address 
0x80000000. Eight of the nine NIC registers that Linux uses and that affect which 
memory accesses the NIC performs are shown. The ninth register is 
RX_BUFFER_OFFSET and is described in Section C.1.
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Figure 10: Five initialized buffer descriptors chained together into a transmission 
queue ready to be given to the NIC. The first three buffer descriptors specify how 
the NIC shall fetch the first frame from memory. The first buffer descriptor 
addresses the first part of the first frame since it is at the head of the queue and its 
SOP bit is equal to one. The second buffer descriptor addresses the second part of 
the first frame since it follows the first buffer descriptor in the queue and its SOP 
and EOP bits are equal to zero. The third buffer descriptor addresses the last part 
of the first frame since it follows the second buffer descriptor in the queue and its 
EOP bit is equal to one. The following two buffer descriptors specify how the NIC 
shall fetch the next two frames. Since those two buffer descriptors identify 
complete frames, both their SOP and EOP bits are set. To allow software to know 
when the NIC (i) has released the buffer descriptors addressing a frame, (ii) has 
processed the queue, or (iii) teared down the queue, the buffer descriptors 
addressing the first part of a frame have their OWN bits set to one, and their EOQ 
and TD bits set to zero, respectively. The buffer length field specifies the size in 
bytes of the data buffer the buffer pointer field identifies. The next descriptor 
pointer field of the fifth buffer descriptor is equal to zero since it is the last buffer 
descriptor in the queue.
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• NIC management fields. The most important are:

◦ Start/End of Packet (SOP/EOP) bits: Set to one if the buffer descriptor 
addresses the first/last part of a frame. For transmission, this field is set 
by software and for reception, it is set by the NIC. This field allows 
both software and the NIC to know which data buffers that belong to a 
certain frame.

◦ The ownership (OWN) bit: Set to one by software in the buffer 
descriptor addressing the first part of a frame to transmit (SOP buffer 
descriptor), and in all buffer descriptors in a receive queue. When the 
NIC has completed transmission or reception of a frame addressed by a 
set of buffer descriptors, the NIC clears this bit in the (SOP) buffer 
descriptor addressing the first part of that frame. The value of this bit 
informs software of when it can reuse the buffer descriptors addressing 
a certain frame, and when a frame has been transmitted or received.

◦ End of Queue (EOQ) bit: Set to one by the NIC in the last buffer 
descriptor in a queue, when the NIC has processed all buffer descriptors
in that queue. This field allows software to know if the NIC has 
processed a complete queue.

◦ Teardown completion (TD) bit: Set to one by the NIC in the first 
unused buffer descriptor in a queue when that queue has been teared 
down. This field allows software to know if the NIC has finished the 
tear down operation of a queue.

Before a frame or a set of frames are transmitted must the buffer descriptors 
addressing them be chained together to form a queue, and likewise to enable 
reception must a set of buffer descriptors addressing a set of free data buffers be 
chained together to form a receive queue. A transmission queue that has been 
initialized by software and that is ready to be given to the NIC is shown in Figure 
10.

2.3.2.3 Initiating Transmission and Reception

When the buffer descriptors addressing a frame or a set of frames are initialized 
and chained together to a queue, software can make the NIC transmit those frames 
by writing the physical address of the first buffer descriptor in that queue to the 
TX0_HDP register (Head Descriptor Pointer). For instance, if the queue in Figure 
10 is to be transmitted and the first buffer descriptor, identified by the label “Head 
of queue”, is located at physical address 0x4A102000, then TX0_HDP is written to
0x4A102000. When TX0_HDP has been written, the NIC processes all buffer 
descriptors in the queue and transmits the frames addressed by them, until the end 
of the queue is encountered, at which point the NIC sets TX0_HDP to zero.

Reception works similarly by writing RX0_HDP with the physical address of a 
receive queue but with the meaning that the buffer descriptors address memory that
can be used to store received frames. Received frames cannot be stored in memory 
if all buffer descriptors in the receive queue have been consumed by the NIC.
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There are eight transmission DMA channels and eight reception DMA channels 
where each one processes its own queue of buffer descriptors. Linux only uses one 
transmission DMA channel and one reception DMA channel, both of which have 
the index zero (thereby the zeros in the register names TX0_HDP and RX0_HDP). 
Also, the HDP registers must be initialized to zero after a reset operation and 
before they are used to transfer frames.

2.3.2.4 Acknowledging Interrupts

When a DMA channel has completed the transfer of a frame, the NIC writes the CP
register (Completion Pointer) of that DMA channel with the physical address of the
buffer descriptor that addresses the last part of the transferred frame. For instance, 
when the first frame in Figure 10 has completed transmission, and if its third buffer
descriptor is located at physical address 0x4A102020, then the CP register of the 
corresponding DMA channel is set to 0x4A102020. These writes performed by the 
NIC asserts a frame transmission or reception completion interrupt, depending on 
which CP register is written.

Software acknowledges such interrupts by writing the corresponding DMA 
channel's CP register with its current value, at which time the NIC deasserts the 
interrupt. Since Linux only uses DMA channels zero, Linux only uses the TX0_CP 
and RX0_CP registers to acknowledge interrupts. The CP registers are also used 
for teardown interrupts (see next subsection). (The NIC can generate other 
interrupts as well but they are not described since Linux does not use them.) Also, 
the CP registers should be initialized to zero after a DMA hardware reset operation.

2.3.2.5 Tearing down Transmission and Reception

Software can make the NIC abort the transmission of a queue or disable the 
reception to a queue by writing the TX_TEARDOWN and RX_TEARDOWN 
registers, respectively. When software writes these two registers with the index of 
the DMA channel to abort, the NIC initiates a tear down operation on the 
corresponding DMA channel. When such an operation is initiated, the NIC first 
completes the transmission or reception of the currently processed frame. Then, the
NIC writes the HDP register of the teared down DMA channel with the value zero, 
sets the TD bit in the first unused buffer descriptor, and writes 0xFFFFFFFC to the 
DMA channel's CP register to generate a teardown interrupt. For instance, assume 
that the buffer descriptor queue in Figure 10 is given to transmission DMA channel
zero and a teardown command is initiated while the NIC transmits the first frame 
of that queue. After the NIC has transmitted that frame, the NIC sets TX0_HDP to 
zero, the TD bit in the fourth buffer descriptor to one, and TX0_CP to 
0xFFFFFFFC. Software is expected to acknowledge teardown interrupts by writing
0xFFFFFFFC to the corresponding DMA channel's CP register. In the previous 
example, software is expected to write 0xFFFFFFFC to the TX0_CP register.

The teardown registers are relevant for memory accesses because teardown 
operations affect which memory the NIC accesses, since the unused buffer 
descriptors in the teared down DMA channel will not be processed by the NIC. The
CP registers are not critical for memory accesses but are related to interrupts.
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2.3.3 Hypervisors

A hypervisor runs directly on the hardware. On top of the hypervisor several guests
can run independently of each other. A guest can, for instance, be an operating 
system with applications running on top of it, or a bare-metal application that does 
not run on top of an operating system, as is the case with the monitor used in the 
work described in this thesis. The purpose of the hypervisor is to allow several 
software systems to share the same hardware without interfering with each other, 
except for intended communication: The guests can only communicate with each 
other via dedicated communication channels provided by the hypervisor.

To prevent guests from interfering with each other in illegal ways, the system 
resources must be protected by the hypervisor. System resources are system 
registers in the CPU, page tables and I/O devices. In the ARM context, the system 
registers in the CPU are protected from the guests by making the hypervisor be 
executed in PL1 and the guests in PL0. The page tables and the I/O devices are 
protected by configuring the page tables such that the execution of the current 
guest can only access the memory of that guest and not write the page tables or 
configure the I/O devices. A system configuration of this kind is illustrated in 
Figure 11 for the system that this thesis is concerned with when Linux is executed.

Giving the guests arbitrary access to page tables or I/O devices must be prevented 
since otherwise the guests could:

• Change the access permissions in the page tables to get control of the 
system.

• Configure the devices such that they enter unknown states, making both 
hardware and software operate incorrectly.

• Configure the devices, if they have DMA support, to read or write the 
memory belonging to the hypervisor or other guests. These memory 
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Figure 11: Linux and the monitor (a bare-metal application) running in non-
privileged mode on top of the hypervisor in a system with an ARM CPU connected 
to a NIC. Linux is currently executed and the hypervisor has configured the system
such that Linux can only access its own memory. The guests can communicate with
the hypervisor through hypercalls and exceptions.
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accesses could give a guest access to sensitive data or result in that the 
guest takes control of the system.

On ARM, operating systems are intended to be executed in PL1 and applications 
are intended to be executed in PL0. An operating system can therefore isolate itself
from the applications. Since the hypervisor must run in PL1, the guest operating 
systems must be modified in order to be executed correctly in PL0. Such a 
modified operating system is said to be paravirtualized, as is the case for Linux that
this thesis deals with. Having a paravirtualized operating system running on top of 
a hypervisor normally implies that the hypervisor provides a software interface that
the guests are designed to be executed on top of. This interface consists of a set of 
functions, called hypercalls.

When a guest needs to access a protected system resource, the guest invokes the 
hypervisor with parameters containing information of both which hypercall the 
guest wants the hypervisor to invoke and which operations the guest wants the 
hypercall to perform. On ARM, the execution of a guest invokes the hypervisor by 
means of a supervisor call instruction, the execution of which raises a supervisor 
call exception. That exception causes the CPU to transition from usr mode to svc 
mode and set the program counter to point to a location in the memory where the 
hypervisor is stored. From there, the hypervisor is executed and investigates the 
provided parameters in order to invoke the correct hypercall. The hypercall then 
checks if the requested operations are secure, and executes them only if they are.

All communication between the hypervisor and the guests must not necessarily 
occur through hypercalls. Another method is to use exceptions. Communication 
through exceptions is suitable in the context of I/O devices, since there is no need 
to modify the device drivers in the guests. By configuring the page tables to 
securely map the device registers, access violations will occur when a guest 
attempts to access a device register. These violations cause the CPU to take an 
exception and execute the hypervisor. The hypervisor investigates which device 
register the guest attempted to access, and if it is a write, which value the guest 
attempted to write. The hypervisor then decides whether the attempted operation is 
secure, and if so re-executes it. Otherwise is the operation blocked. For instance, 
on ARM, a hypervisor can read the DFAR register and the banked link register 
(which stores the contents of the program counter before an exception occurred) to 
find out which virtual address the guest attempted to access and which instruction 
of the guest that caused the exception. From that information, the hypervisor can 
identify which device register the guest attempted to access, if the access was a 
read or write, and if it was a write which value the guest attempted to write.

Letting guest operating systems be executed in non-privileged mode along with 
their applications raises the concern of the isolation of the guest operating system. 
Guest operating systems can be isolated from their applications as follows:

• The guest operating system configures its memory mapping such that the 
execution of the current application can only access the memory of that 
application.

• If a guest requests to access a critical resource, the hypervisor checks that 
the request is issued from the guest operating system and not from an 
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application. Hence, applications cannot fool the hypervisor that the guest 
operating system is issuing a request to access a critical resource.

These two operations imply that an application initially can only access non-
privileged registers and its own memory, and that this property is preserved during 
the execution of the application. Since the guest operating system is not storing any
data in non-privileged registers while applications are executed, the guest operating
system is isolated from the applications.

2.3.4 Hypervisor and Monitor

The previous subsections 2.3.1 through 2.3.3 have described the ARMv7 ISA, the 
NIC on BBB, hypervisors and software running on top of hypervisors from a 
general perspective. This subsection, in contrast, describes the specifics of the 
original hypervisor and monitor which the work presented in this thesis had as a 
starting point.

2.3.4.1 Hypervisor

As described in Section 1.1, the hypervisor is executed in privileged mode and 
Linux and the monitor in non-privileged mode. All three software components 
have their own statically allocated physical memory regions. The page tables are 
located in the physical memory region allocated to Linux and are always mapped 
as read-only in non-privileged mode. The page tables are configured such that 
Linux can only access its own physical memory region, and as Linux has 
configured the page tables that map that physical memory region. The monitor has 
read access to the physical memory region allocated to Linux in order to be able to 
inspect whether newly mapped memory blocks contain signed code or not. The 
monitor can also read a few critical data structures located in the physical memory 
region allocated to the hypervisor in order to decide whether new page table entries
are secure or not (as will be seen shortly). Linux, the hypervisor and the monitor 
are therefore not completely isolated, but sufficiently separated such that only the 
hypervisor can access and modify critical system resources.

The exceptions that can occur are handled by the hypervisor as follows:

• FIQ interrupts: Cannot occur since no I/O devices are configured as high-
priority devices.

• IRQ interrupts: Are raised when the timer or the UART device asserts an 
interrupt. These devices are not critical to ensure that only signed Linux 
code is executed, since they cannot access memory. They are therefore 
ignored. However, only Linux uses these devices. IRQ interrupts are 
therefore directly forwarded by the hypervisor to the Linux kernel by 
setting the program counter to the address of the IRQ interrupt exception 
handler in the Linux kernel.

• Supervisor call exceptions: The hypervisor has a data structure that records 
whether it is the Linux kernel that is executed (virtual privileged mode) or 
if an application is executed (virtual non-privileged mode). If this exception
occurs when Linux is executed in virtual non-privileged mode, it means 
that an application invoked a system call. The hypervisor therefore sets the 
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program counter to the virtual address of the system call handler routine in 
the Linux kernel.

If this exception occurs when Linux is executed in virtual privileged mode, 
it means that the Linux kernel invoked a hypercall. The hypercalls provided
by the hypervisor handle among a few other tasks: masking of interrupts (I 
flag of CPSR), cache management (flush and invalidate cache blocks), 
restoring CPU registers after the Linux kernel has handled an exception, 
and memory mapping requests.

• Undefined instruction exceptions: Can only occur when Linux is executed 
since the hypervisor and the monitor are trusted. For instance, the code of 
the hypervisor and the monitor do not contain incorrectly encoded 
instructions. These exceptions are therefore forwarded to the undefined 
instruction exception handler in the Linux kernel.

• Prefetch abort exceptions: Are either forwarded to the prefetch abort 
exception handler in the Linux kernel or handled by the hypervisor. The 
hypervisor uses these exceptions to change access permissions for memory 
blocks that Linux requested to map as both writable and executable but 
where execute permission was revoked, since no blocks are allowed to be 
both writable and executable. In these cases, the hypervisor changes the 
access permissions from writable to executable if the accessed block 
contains signed code, and sets the program counter to the instruction that 
caused the exception. The faulting instruction in Linux memory is then re-
executed, which will this time succeed.

• Data abort exceptions: Are either forwarded to the data abort exception 
handler in the Linux kernel or handled by the hypervisor. The hypervisor 
uses these exceptions in a similar way as prefetch abort exceptions but 
where write permission to the accessed block was revoked.

In the proof plan in Chapter 6 it is necessary to know whether it is the hypervisor, 
the monitor or Linux that is executed by the CPU in a given state. The executed 
software component is determined by the current values of the CPSR and DACR 
registers as follows. The page table entries that map the physical memory regions 
allocated to the hypervisor, the monitor and Linux have DACR field indexes zero, 
one and two, respectively. Bits five and four of DACR, denoted as DACR[5:4], 
specify how access permissions to the physical memory region allocated to Linux 
are computed. If CPSR specifies the CPU to be in non-privileged mode and 
DACR[5:4] = 0b01, then Linux is executed and is accessing its memory as it has 
configured its page table entries. If the CPU is in non-privileged mode and 
DACR[5:4] = 0b11, then the monitor is executed with access to the physical 
memory region allocated to Linux. Hence, the monitor can check whether code in 
the physical memory region allocated to Linux is signed. If the CPU is in 
privileged mode, the hypervisor is executed.

2.3.4.2 Memory Mapping Request Handlers and Monitor

The memory mapping request handlers operate as follows [86]. Since the physical 
address space is 32 bits wide, each 4 kB physical memory block can be identified 
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by a block index consisting of 20 bits. The hypervisor maintains three data 
structures to record the state of each such block, and which take a block index as 
argument. The first data structure τ records the type of each block: L1, L2 or D. 
Blocks of type L1 and L2 contain first- and second-level page tables, respectively. 
Blocks of type D contain all other data, including code. The other two data 
structures, ρwt and ρex, record the number of page table entries in page tables located
in L1 and L2 blocks that map a given block as writable and executable, 
respectively.

Recall that a memory mapping request handler is implemented by both the 
hypervisor and the monitor. When a memory mapping request handler is invoked, 
the hypervisor performs two checks. One check sees if the request specifies a page 
table modification that gives Linux access to physical memory allocated to the 
hypervisor or the monitor, or writable access to a block of type L1 or L2. The other 
check sees if the request specifies a page table modification such that a first-level 
entry in a page table in an L1 block refers to a second-level page table that is not in
an L2 block. If the request satisfies any of these two checks, the hypervisor rejects 
it. Otherwise the request is forwarded to the monitor. The monitor validates the 
request and returns its answer to the hypervisor. If the monitor accepts the request, 
the hypervisor executes it and otherwise rejects it.

The validation mechanism of the monitor accepts a request if and only if the 
request satisfies the following two conditions:

• The page tables in L1 and L2 blocks do not map a block in the physical 
memory region allocated to Linux as both writable and executable:

◦ The request specifies the modification of a page table entry in an L1 or 
L2 block such that the modified entry does not map a block as both 
writable and executable. A page table is in an L1 or L2 block if and only
if τ is equal to L1 or L2 for the block that the page table is located in, 
respectively.

◦ The request specifies the modification of a page table entry in an L1 or 
L2 block such that if the modified entry maps a block as 
writable/executable, then no other entry in a page table in an L1 or L2 
block maps the block as executable/writable, respectively. That is, if a 
block is to be mapped as writable, its entry in ρex must be equal to zero, 
and if a block is to be mapped as executable, its entry in ρwt must be 
equal to zero.

This condition prevents Linux from writing unsigned code into blocks that 
are mapped as executable.

• The contents of each block that is requested to be mapped as executable has
its signature in the golden image. The golden image is located in the 
physical memory region allocated to the monitor, and is initialized to the 
set of signatures that represent the code that the user of the system trusts.

When Linux reschedules a process, the hypervisor must change the set of page 
tables that are used by the MMU. Since the hypervisor and the monitor have 
already validated the page tables in blocks of type L1 and L2, the hypervisor and 
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the monitor do not need to revalidate the set of page tables that the rescheduled 
process uses. The hypervisor only needs to read τ for the block that contains the 
first-level page table of the rescheduled process. Hence, τ enables efficient 
switching of page tables. Also, by having the page tables in the physical memory 
region allocated to Linux and mapping them as writable only in privileged mode, 
and since Linux can configure the page tables through the memory mapping 
request handlers, it is not necessary to have duplicate (shadow) page tables in the 
hypervisor. Hence, this design uses hypervisor memory efficiently.

The memory mapping request handlers and their associated data structures are 
described in deeper detail in Sections 3.5 and 3.6, respectively, and more formally 
in Appendix B. Those two sections also describe the conditions that must be 
checked in order for a memory mapping request to be secure in the presence of the 
NIC. For instance, the memory mapping request handlers must not set blocks to be 
of type L1 or L2 or map them as executable if the NIC can write such blocks. Also,
the NIC register write request handlers must not configure the NIC such that it can 
write blocks of type L1 or L2, or that have their entry in ρex greater than zero. 
Otherwise the NIC could potentially give the control of the system to Linux and 
enable execution of unsigned Linux code.

The design of the memory mapping request handlers has been proved in the 
theorem prover HOL4 to ensure that only signed Linux code is executed (on the 
system consisting only of an ARMv7 CPU and a memory). The verification has 
been done by proving this property on a HOL4 model that describes the operation 
of the design as a transition system. That transition system has the following 
characteristics:

• The state encodes the hardware state, including CPU registers and memory,
some critical data structures of the hypervisor, and the golden image of the 
monitor.

• The execution of one CPU instruction located in Linux memory that does 
not cause a change in execution mode is described by one transition. The 
operation of such a transition is described in HOL4 by an ARMv7 ISA 
model [84] and an MMU model [86].

• The execution of one CPU instruction located in Linux memory that do 
cause a change in execution mode, potentially resulting in an invocation of 
a memory mapping request handler (supervisor call instruction), and the 
operations performed by the CPU when executing the corresponding 
memory mapping request handler, are described by a single transition.

The proof of that only signed Linux code is executed has been implemented in 
HOL4 by formulating an invariant that implies that all executable blocks have 
signed contents. By ensuring that all initial states satisfy the invariant and by 
proving that all transitions preserve it, it is proved that all reachable states satisfy 
the invariant. Hence, it is proved that for all system executions, all executed CPU 
instructions located in Linux memory are located in blocks that have signed 
contents. Figure 12 illustrates this proof approach, and how the transition system 
that represents the design differs from a transition system that represents the 
implementation of the binary code of the hypervisor and the monitor.
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For the purpose of formally verifying that only signed Linux code is executed, 
there are two reasons for why it is suitable to use a hypervisor and a monitor. First, 
the hypervisor and the monitor consist of a relatively small amount of code (less 
than 10000 lines of code combined), compared to the Linux kernel (millions of 
lines of code). Second, by implementing the signed code mechanism inside a 
securely separated software component (the monitor), the hypervisor can retain its 
focus on managing the hardware and providing separation between the software 
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Figure 12: The difference between the transition system that describes the design 
and the transition system that describes an implementation of the design. The 
upper part of the figure shows three transitions in the former transition system. 
The transitions di-1 → di and dl → dl+1 describe executions of CPU instructions 
performed by Linux. The transition di → dl describes how the design of the 
memory mapping request handlers handles a memory mapping request issued by 
Linux. This transition describes the execution of a supervisor call instruction by 
Linux and the operations of the invoked memory mapping request handler. The 
proof of that the design ensures that only signed Linux code is executed is based on
that all reachable states satisfy the invariant I, and from states satisfying I, Linux 
blocks mapped as executable contain signed code. The lower part of the figure 
shows a number of transitions in the transition system that describes an 
implementation of the design. The transitions ri-1 → ri and rl → rl+1 describe 
executions of CPU instructions performed by Linux and manipulate the state in an 
identical way as done by the transitions di-1 → di and dl → dl+1, respectively. The 
transition ri → ri+1 describes a supervisor call exception that invokes a memory 
mapping request handler. The transitions from the state ri+1 to the state rj and from 
the state rk+1 to the state rl describe executions of CPU instructions of the 
hypervisor when its part of a memory mapping request handler is executed. The 
transitions from the state rj to the state rk+1 describe executions of CPU 
instructions of the monitor when its part of a memory mapping request handler is 
executed. The CPU is in non-privileged mode in the states between rj-1 and rk+1 
since the monitor is executed in non-privileged mode. To prove that the binary 
code of the hypervisor and the monitor ensures that only signed Linux code is 
executed, it must be proved that the transitions from the state ri to the state rl 
operate in a corresponding way as the transition di → dl operates.
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components. The decoupling of the purposes of the hypervisor from the purposes 
of the monitor allows the verification of the separation properties of the hypervisor 
to be decoupled from the verification of the signed code mechanism of the monitor.
The first property of code size is critical in order to make it feasible to formally 
verify that only signed Linux code is executed. The second property of decoupling 
the security mechanisms simplifies the verification compared to if the two security 
mechanisms were integrated in the hypervisor.

It is also interesting to know why the verification has been done in HOL4. The 
ambition is to formally verify that the binary code of the hypervisor and the 
monitor ensures that only signed Linux code is executed. The reason for such 
detailed verification at the ISA level is because malicious code injection attacks are
often performed by means of sophisticated techniques. The verification must 
therefore consider the interaction between the hardware and the software. Hence, a 
detailed and complex hardware model of the instruction set architecture of the 
ARMv7 CPU must be used.

Static analyzers and tools that verify annotated source code are unsuitable for 
verification at the ISA level, since they are normally designed to verify program 
properties and not system properties that involve both hardware and software. 
Furthermore, verifying that only signed Linux code is executed requires analysis of
all reachable hardware states in all system executions. Model checkers are 
unsuitable for such analyzes since they suffer from the state-space explosion 
problem. Since theorem provers do not suffer from these two problems, they are 
suitable tools for verifying that only signed Linux code is executed.

Since the implementation of complex hardware models is difficult and time 
consuming, and the CPU is a complex hardware component in an embedded 
system, it is desirable to use the already implemented model of the ARMv7 ISA in 
HOL4 [84]. For these reasons, HOL4 is a suitable tool to use to formally verify 
that only signed Linux code is executed in an embedded system containing an 
ARMv7 CPU with memory.

2.4 Device Model Framework and Related Theorems
The reasoning in the proof plan in Chapter 6 depends on the models described in 
Chapter 5, which in turn depend on the device model framework. The device 
model framework describes the execution of computer hardware consisting of an 
ARMv7 CPU, a memory and a set of arbitrary I/O devices. Basing the models on 
the device model framework makes the work described in this thesis usable for 
PROSPER. This section describes the device model framework and some theorems
proved about it from the perspective of this thesis [85].

2.4.1 Device Model Framework

The device model framework is implemented in HOL4 and integrates the 
following HOL4 models:

• ARMv7 ISA and memory [84]: Describes the ARMv7 ISA including the 
operations performed on memory. This model is a transition system where 
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each transition describes the execution of one binary encoded ARMv7 
instruction. The state records the contents of CPU registers and memory.

• ARMv7 ISA MMU [86]: Describes the operation of an ARMv7 ISA MMU.
This model is a function, called mmu, that is further described in 
Subsection 5.2.4.3. By combining this model with the model of the ARMv7
ISA and the memory, a model of the ARMv7 CPU is obtained.

• I/O devices: Each model of an I/O device describes the operation of that 
I/O device as a transition system. The device models describe how the 
devices respond to register accesses performed by the CPU, execute 
independently of the CPU, access memory and raise interrupts. The 
framework and the I/O device models together describe when interrupts are
forwarded to the CPU, and with the ARMv7 ISA and MMU models how 
the CPU accesses I/O device registers.
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Figure 13: The device model framework integrates all HOL4 models that describe 
the ARMv7 ISA, the MMU, the memory and the I/O devices. The resulting model 
describes how the represented physical hardware system executes. The model of 
the ARMv7 ISA and the model of the MMU describe the execution of an ARMv7 
CPU. The model of the ARMv7 ISA uses the model of the MMU to compute access 
permissions and physical addresses. The framework uses the output of the MMU 
model to decide whether the computed physical addresses correspond to memory 
locations or registers of I/O devices. If a physical address identifies the location of 
a register of an I/O device, the framework lets the model of the accessed I/O device
to update its state. Interrupts from I/O device models are forwarded by the 
framework to the model of the ARMv7 ISA.
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Figure 13 illustrates how the framework integrates all models.

The framework is a transition system where the state includes the state of the 
ARMv7 ISA and memory model and the states of all I/O device models. The 
transitions of the CPU and the devices are performed in an interleaved manner as 
determined by a non-deterministic scheduler. The scheduler determines non-
deterministically whether the CPU or a device shall perform the next transition, 
and if it is a device, which device. The framework can therefore generate all 
possible interleavings of the transitions that are performed by the CPU and the 
devices. Figure 14 illustrates this idea, and additional ideas introduced below.

The I/O device interface of the framework consists of four types of transitions:

• Register read: The framework lets a device perform this kind of transition 
when the CPU reads a register of that device. Devices can therefore react 
and update their states when their registers are read by the CPU.

• Register write: Similar to register read transitions but with respect to 
register writes.

• Autonomous: A device performs an autonomous transition when it is 
scheduled by the non-deterministic scheduler. This transition corresponds 
to one autonomous execution step of a device.

• Memory read request reply: When a device performs an autonomous 
transition, it might generate a memory request. If it is a read request, the 
framework reads a byte in memory and then gives the byte value to the 
device. The device performs this kind of transition to react to the reply and
update its state.

The rest of this subsection describes how the framework is implemented and what 
the interface to the device models is. This description helps the understanding of 
the structure of the NIC model described in Section 5.1 and Appendix C.

The transition system that the framework and the I/O device models constitute 
advances by means of system execution cycles. Each cycle consists of one CPU 
transition, followed by zero or more autonomous transitions performed by the 
devices, each of which is potentially followed by a memory read request reply 
transition. The function next describes one system execution cycle in the two steps 
(see also Figure 14). The first step lets the CPU perform a transition and access a 
device register, and the accessed device to perform a register read or write 
transition. The second step lets the devices perform an autonomous transition and 
potentially also a memory read request reply transition.

The two steps of next are implemented by the framework as follows:

1. The CPU performs one transition that corresponds to the execution of one 
instruction. If the instruction raises an exception, the CPU enters a state 
where the exception has been taken. In that case, next performs step 2. If no
exception is raised, the instruction is executed. That might cause the CPU 
to access the virtual address space. If the virtual address is mapped by the 
MMU to a device register, next applies the function of the model of the 
accessed device that describes the register read or write transition, 
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depending on whether the access is a read or a write. These two functions 
are referred to as d_read and d_write and have the following interface:

• d_read:

(device, word32) d_read(device d, word32 pa).
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Figure 14: Several possible execution traces that can be generated by the non-
deterministic scheduler in the device model framework. Transitions performed by 
the CPU and four devices are shown. CPU transitions have the label CPU and the 
device transitions have the label D indexed with 1, i, j or n, where the index 
identifies the device performing the transition. Some of the transitions performed 
by the CPU and the devices describe operations on distinct resources, and 
therefore can several traces end up in the same state. For instance, there are two 
traces from r0 to r3: r0 → r1 → r2 → r3 and r0 → r1 → r8 → r3.  The former trace 
starts with two CPU transitions followed by a transition performed by the device 
D1, and the latter trace starts with one CPU transition followed by one transition 
performed by the device D1, and one additional CPU transition. One CPU 
transition corresponds to the execution of one CPU instruction. If the CPU 
instruction reads or writes a device register, the CPU transition involves two 
transitions (where the intermediate state is not shown): One transition of the CPU 
followed by one transition of the accessed device. The operation of the latter 
transition is described by either d_read or d_write, depending on whether the CPU
instruction reads or writes a register of the accessed device. The functions d_read 
and d_write are instantiated by the model of the accessed device. One device 
transition is described by the framework function advance_single and might also 
involve two transitions, both of which are performed by the same device. 
advance_single first applies progress, which describes one execution step of the 
device, called autonomous transition. If the autonomous transition of the device 
issued a memory read request, advance_single also applies receive to let the 
device react on the received memory read request reply. Both progress and receive 
are instantiated by the model of the device performing the device transition. The 
framework function next describes one system execution cycle, which involves one 
CPU transition followed by zero or more device transitions. Transitions described 
by next are shown as dashed arrows without a label.
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d_read takes as arguments the state of the accessed device, d, and the 
physical address, pa, of the device register to read. The return value is a
tuple with two components. The first component is the state that the 
device enters when its register located at physical address pa is read in 
the state d. The second component is the 32-bit value of the read 
register when the device is in the state d.

• d_write:

device d_write(device d, word32 pa, word32 value).

d_write takes three arguments: the state d of the device whose register 
located at physical address pa is to be written with the value value. The 
return value is the state the device enters as a result of the write.

2. As long as the scheduler decides that a device shall make progress, the 
function advance_single is applied on the state of the scheduled device. 
Each such application of advance_single makes the scheduled device 
perform one autonomous transition. If the autonomous transition issues a 
memory read request, advance_single also lets the device perform a 
memory read request reply transition. Potentially raised interrupts during 
this step can be handled by the CPU during the next system execution cycle
when next is applied again.

The function advance_single also operates in two steps:

1. advance_single applies the function progress. progress is instantiated by 
the model of the scheduled device and describes how that device performs 
autonomous transitions:

(device, mem_req  { }, bool) ∪ ⊥ progress(device d).

The argument is the state of the device. The return value is a tuple with 
three components: the updated device state resulting from an autonomous 
transition from the device state d, a possible memory request, and a boolean
flag that is true if the device asserts an interrupt in the updated device state 
d. A memory request is issued if and only if the second component is 
distinct from . The data type mem_req contains information of whether ⊥
the memory request reads or writes memory, the physical address of the 
memory byte to access, and if it is a write, which value to write.

2. If progress in step 1 returned a memory request, advance_single applies the
function mem_acc_by_dev on the memory request to make the request take 
effect. For read requests the device must be given the reply to perform a 
memory read request reply transition. mem_acc_by_dev gives the reply to 
the device by applying the function receive. receive is instantiated by the 
model of the device issuing the memory read request and describes how 
that device performs memory read request reply transitions:

device receive(device d, mem_req memory_reply).

receive takes as arguments the state of the device and the reply to the 
memory read request returned by progress in step 1. The return value is the 
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updated device state that the device enters when it is given the reply in the 
state d.

The functions d_read, d_write, progress and receive are instantiated by four 
functions of the NIC model, read_nic_register, write_nic_register, nic_execute and
memory_byte, respectively, described in Subsection 5.1.1. These latter functions 
describe the corresponding operations of the NIC on BeagleBone Black. Also, the 
proof plan in Chapter 6 is based on two models, called the real model and the ideal 
model, to reason that only signed Linux code is executed. The real and ideal 
models are described in Sections 5.2 and 5.3, respectively, both of which are based 
on the device model framework instantiated with these four NIC model functions. 
Section 5.2 describes both a part of the state and the transitions of the device model
framework instantiated with the NIC model.

2.4.2 Theorems about the Device Model Framework

The theorems proved in HOL4 about the device model framework [85] not only 
concern the device model framework with general I/O devices. They also state 
properties of hypervisors with guests executed on the hardware described by the 
device model framework instantiated with I/O device models.

The assumptions of the theorems are the following properties and configurations of
the hypervisor and the I/O devices:

• Guest memory isolation: The MMU is configured such that the execution 
of the current guest can only access the memory of that guest.

• Devices do not both access memory and assert interrupts: The reason 
behind this assumption is to provide confidentiality between guests. It 
prevents the guests from concluding properties about the memory contents 
of other guests by analyzing their own execution time.

• Between two executed instructions of a guest, devices accessing memory 
must either only access the memory of the current guest, or the memory of 
other guests: This assumption prevents devices from transferring memory 
contents between different guests.

• Devices do not enter undefined states: This assumption is necessary in 
order to analyze the execution of the devices.

• Devices do not access device registers: This assumption prevents devices 
from reconfiguring themselves into insecure states or to send information to
other devices and guests.

• Guests cannot access device registers: This assumption prevents guests 
from reconfiguring devices to enter insecure states and forward information
from one guest to another.

The conclusions of the theorems from these assumptions are:

• Non-infiltration: The executions of the current guest and the devices that 
cannot access the memory of other guests are independent of the rest of the 
system. This means that the execution of a guest and the devices only 
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accessing the memory of that guest, cannot deduce any information about 
or be affected by the state of:

◦ Other devices only accessing the memory of other guests.

◦ Other guests.

◦ The hypervisor.

• Non-exfiltration: The executions of the current guest cannot affect memory 
other than its own nor the devices that do not access the memory of that 
current guest. This means that the execution of a guest and the devices only
accessing the memory of that guest, cannot affect the state of:

◦ Devices not accessing the memory of the current guest.

◦ Other guests.

◦ The hypervisor.

Parts of these two conclusions would be useful for proving that only signed Linux 
code is executed. However, since the monitor must access hypervisor and Linux 
memory, and since the NIC asserts interrupts due to memory accesses, the first two
assumptions about guest isolation and memory accesses versus interrupts do not 
hold. The theorems therefore cannot be directly applied for proving that only 
signed Linux code is executed. Subsection 6.6.2 discusses the applicability of these
theorems with respect to the implementation of the proof plan described in Chapter
6.

2.5 Related Work
This section is structured as follows. To get some ideas of how the NIC register 
write request handlers can be designed and implemented, Subsection 2.5.1 
describes how hypervisors developed by industry and research projects handle 
NICs and I/O devices. Since these handlers must be formally verified, Subsection 
2.5.2 focuses on verification of device drivers. The proof plan shall not only 
consider the NIC but the complete system, and it is therefore relevant to know 
what other projects have done in the context of verifying software that controls 
hardware and supervises software running on top of it. Subsection 2.5.3 is 
therefore devoted to the verification of hypervisors and operating systems. 
Subsection 2.5.4 describes some tools that may be useful when implementing the 
proof plan presented in Chapter 6.

2.5.1 Virtualization of I/O Devices

The ARM CPU used in this project has no dedicated hardware that can be used by 
the hypervisor to restrict which memory regions the NIC can access. It is 
interesting to see which hardware assistance that exists, in case the hypervisor is 
ported in the future to another architecture. ARM, AMD and Intel all provide 
virtualization technologies for certain CPUs that can be used by hypervisors to 
give guests secure direct access to I/O devices. The hypervisor configures the 
system such that the I/O devices allocated to a guest can only access the memory 
of the guest in question [37-39]. From the perspective of this project and with the 
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NIC in mind, would such hardware probably significantly simplify the software 
design, the proof plan, and their implementations. The hardware assistance 
provided by ARM is briefly described in Section 4.4.

Several hypervisors [40-50] use one or a combination of the following three 
solutions to give their guests access to I/O devices:

• Emulation: The hypervisor allows the guests to access an I/O device with 
their original device driver. The hypervisor makes all guests believe that 
they have exclusive access to the device and prevents the guests from 
interfering with each other and the hypervisor. Emulation is commonly 
implemented by software in the hypervisor.

• Paravirtualization: The hypervisor have one part of a device driver, the 
back-end, and the guests have a paravirtualized driver, the front-end. A 
guest uses its front-end driver to communicate with the back-end driver, 
which in turn performs the actual device configuration.

• Direct access: The guests are trusted and are given direct access to the I/O 
devices, or the hypervisor uses virtualization support from the hardware to 
prevent the guests from arbitrarily configuring the I/O devices.

One interesting method for implementing secure and performance efficient NIC 
handling in the Xen hypervisor is by semi-automatically transforming a guest 
operating system device driver to a secure and efficient hypervisor device driver 
[51]. The hypervisor driver is created by binary rewriting the guest OS driver. The 
hypervisor driver only operates on guest data, which are located in guest memory. 
The hypervisor driver therefore cannot corrupt hypervisor data structures, which 
gives security. By means of an address translation mechanism, the hypervisor 
driver accesses guest data in guest memory without context switches. The 
avoidance of context switches is the key to achieving good performance. This 
method improved network performance for the guests by more than a factor two 
compared to the original Xen hypervisor.

However, this approach is not useful for the system consisting of the hypervisor, 
the monitor and Linux for three reasons. First, the advantage of semi-automatic 
generation of the hypervisor driver from the guest OS driver is not useful since the 
NIC register write request handlers are not concerned with managing the operation 
of the NIC, which the Linux NIC driver is, but only with ensuring that writes to the
NIC registers are secure. Second, the advantage of the hypervisor driver not 
accessing hypervisor data structures is not feasible since the data structures that are
used to prevent Linux from insecurely configuring the NIC must be located in the 
hypervisor. Third, the advantage of performance improvement due to the avoidance
of context switches is not relevant since the implementation of the hypervisor 
allows the hypervisor and Linux to switch execution on the CPU without context 
switches.

2.5.2 Formal Verification of Device Drivers

The first three paragraphs are devoted to theorem proving and the last paragraph to
model checking and static analysis.
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Alkassar et al. [52] have verified a UART device driver. The model is a transition 
system that describes a system consisting of a CPU and a UART device. Each 
transition of the CPU corresponds to the execution of one CPU instruction, and the 
UART device performs transitions when it receives input from an external 
environment or when the CPU accesses its registers. The transitions of the CPU 
and the UART device are non-deterministically interleaved. The UART device 
cannot access memory and it interacts with the CPU by means of interrupts and its 
device registers. A device driver for the UART device is presented in assembly 
code, consisting of 11 CPU instructions. A proof is also sketched of that the 
assembly code terminates and that n words from memory are sent to the external 
environment. All models are formalized in the Isabelle/HOL theorem prover.

Similar work to the UART device driver verification has been done but for an 
ATAPI hard disk [53]. It is proved in Isabelle/HOL that an ATAPI device driver 
consisting of 32 CPU instructions has the following property: For all executions, 
after the driver has terminated, a specific page in memory has been copied to a 
sector of the disk. In addition, it is described how execution steps of the ATAPI 
device can be reordered in a system execution trace with respect to execution steps 
of other devices if they do not interfere, and if only the ATAPI device driver 
controls the ATAPI device.

Duan [54] describes a design of a general abstract device model and its integration 
with a HOL4 model of an ARMv7 CPU. By concluding that CPUs are faster than 
I/O devices, the devices are modeled as executing in terms of CPU clock cycles. 
This conclusion is used to justify the modeling of the execution steps of the CPU 
and the devices to occur in parallel instead of in an interleaved manner. The 
abstract device model is instantiated with a model of a UART chip that cannot 
access memory. A few device driver routines for this chip, including interrupt 
handlers that have some special properties, have been proved to be correct at the 
ISA level with respect to liveness and safety properties.

There are also examples where device drivers have been verified by means of 
model checking and static analysis tools. Functional correctness of a multi-sector 
read operation of a device driver for a flash device has been verified by means of 
several model checkers [55]. A Linux USB keyboard device driver has been 
verified by means of source code annotation [56]. The verified properties include 
absence of data races, no illegal memory accesses and correct API usage. A device 
driver used in an industrial critical system has been verified by means of a 
modified version of the static analyzer ASTRÉE [57]. The device driver is written 
in C and the hardware it controls is described by another C program as ghost code. 
(Ghost code is added to a program for the purpose of verification and does not 
affect the original program behavior [92].) These two C programs are composed to 
a multi-threaded C program to model the parallel execution of the device driver on 
the CPU and the controlled hardware. The multi-threaded program is given to the 
modified version of ASTRÉE, which proves that neither the device driver nor the 
controlled hardware transfers data incorrectly.
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2.5.3 Formal Verification of Operating Systems and 
Hypervisors

The VeriSoft XT project has focused on verification of operating systems [58-60]. 
A microkernel operating system has been verified in Isabelle/HOL [58]. The 
microkernel is implemented in C0 (subset of C) with inline assembly. The 
verification has been achieved by modeling the system with several abstraction 
layers. It has then been proved the adjacent abstraction layers operate similarly, and
therefore allowing a property holding on the more abstract layer to be transferred 
to the less abstract layer below it. By using a C0 compiler, whose correctness has 
been verified, this verification establishes correctness at the ISA level. Inline 
assembly is handled by including low-level information in the machine state, and 
merging a sequence of assembly instructions into an atomic operation. This allows 
reasoning at the C0 source code abstraction layer without the need to consider 
assembly instructions. I/O devices are modeled as deterministic transition systems 
and communicate with the CPU and an external environment in an interleaved 
manner. In order to simplify the proofs, the transitions of the CPU and the devices 
are reordered when their operations are independent.

The VeriSoft project has also verified a page fault handler of a microkernel, written
in C0 with inline assembly [59]. The handler interacts with an ATAPI hard disk by 
means of polling. The approach is similar to the one described by Alkassar et al. 
[53] and uses the techniques presented by Alkassar et al. [58].

Starostin et al. [60] have made formal models and proofs of microkernel 
primitives. The microkernel primitives are used to implement system calls and are 
implemented in C0 with inline assembly. The inline assembly instructions are 
analyzed by means of a function that maps C0 variables to memory locations. If an
assembly instruction modifies a memory location that is mapped to from a C0 
variable, the value of the C0 variable is changed accordingly.

The NICTA research center has verified several properties of the seL4 microkernel.
Klein et al. [61] describe how seL4 for ARMv6 and ARMv7 was designed in order 
to make it verifiable. The proofs for the functional correctness of the binary code 
of seL4 are also described and discussed. The verification has been done in 
Isabelle/HOL and some verified properties are correctness of optimized inter-
process communication handlers, correct access control checks, no leakage of 
information, and for each system call its worst case execution time. Also, Klein et 
al. [62] describe how refinement has been used in the verification of seL4 to prove 
that properties that hold on more abstract models also hold on more concrete 
models. The formally verified C compiler CompCert [63] has also been involved in
the verification with a few details described by Fernandez et al. [64].

The hypervisor Muen, which runs on multicore x86-64 CPUs with virtualization 
support, has been proved in Isabelle to have no runtime errors [50]. It has been 
implemented in a toolchain called SPARK 2014 [65, 66].

Sanán et al. [67] describe some initial verification work of the XtratuM hypervisor.
An abstract security model and a model of the C code of the XtratuM hypervisor 
has been implemented in Isabelle/HOL. Some proof methods and concerns have 
been reviewed and compared to the verification of the seL4 microkernel.
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The PROSPER project involves formal verification of properties of hypervisors for
ARMv7 [68-71], including the hypervisor used in the work described in this thesis.
An ARMv7 hypervisor has been verified at the ISA level [68]. The verification was
done by means of HOL4, an ARMv7 ISA model [84], BAP [80] (static analyzer 
that verifies ARM assembly code), an in-house tool that transforms ARM assembly
code to an intermediate language used in BAP, and the SMT solver STP (used to 
check if logical formulas are true). Some of these tools were used to automate the 
verification, and a verification example of a hypercall is described by Dam et al. 
[68].

A hypervisor hosting two guests has also been verified [69]. By means of the 
techniques presented by Dam et al. [68] it is verified that the two guests can affect 
each other only by means of a hypervisor provided communication channel. The 
proof approach is based on bisimulation between two transition system models. 
One model specifies how the implemented system shall behave, and another model
describes the implemented system. The specification model describes a system 
consisting of two physically isolated ARMv7 CPUs executing in an interleaved 
manner. Each guest is assigned its own CPU and hypercalls are executed 
atomically. The implementation model describes the real system consisting of one 
ARMv7 CPU with the two guests running on top of the hypervisor. It is on the 
specification model that it has been proved that the guests can only affect each 
other by means of the communication path provided by the hypercalls. The 
bisimulation result between the two models establish that the guests make the same
observations in the two models. By verifying that the binary code of the hypercalls 
operates as the atomic versions in the specification model, it is established that the 
binary code of the hypervisor is correct. The proved property on the specification 
model can for these two reasons be transferred to the implementation model. (This 
is the approach of the proof plan described in Chapter 6.)

Dam et al. [70] presents a design and a verification of a hypervisor that can run a 
Linux guest. The verification is done on a HOL4 model describing an ARMv7 
CPU, including an MMU, and the atomic executions of a set of hypercalls of the 
hypervisor. The latter are used by Linux to configure its memory mapping. The 
model is specified as a transition system where each transition describes the 
execution of one CPU instruction of Linux, or the execution of one hypercall. It is 
then proved that executions of Linux cannot affect critical system resources or 
deduce any information about them (Linux is isolated). This work has been 
continued, where a more concrete version of the model has been added in which 
the hypervisor stores its data in memory instead for in abstract state components 
[71]. It has then been proved that these two models operate similarly, to allow the 
isolation property to be transferred to the concrete model. The goal is to prove this 
property at the ISA level.

There has also been some work with model checkers. For instance, Vasudevan et 
al. [49] presents the design, implementation and verification of the XMHF 
hypervisor. The core of the hypervisor provides security functionalities that are 
commonly provided by hypervisor based security architectures. It is proved that 
software running at a lower privilege level than the hypervisor cannot modify 
hypervisor memory, where DMA operations are also considered. Most of the 
verification is done at the C source code level with the model checker CBMC. The 
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rest of the verification is done manually, and involves assembly code and certain 
parts of the C code.

The static analyzer VCC, which verifies annotated C code, has been used to prove 
functional correctness of a hypervisor [72, 73]. The hardware is described by 
means of ghost code in VCC which has then been used to prove the correctness of 
the C code portions of the hypervisor [72]. The assembly code has not been 
verified but its contracts have been specified. The correctness of the assembly code
was verified at a later step by translating the assembly code to C code which was 
then verified by VCC [73].

PikeOS is a hypervisor that has also been verified in VCC [74]. The verification is 
based on models that describe the operations of the hardware and the assembly 
code of the hypervisor. The execution of the assembly code on the hardware model
is described by C functions. These C functions are annotated and automatically 
verified in VCC.

2.5.4 Tools for Formal Verification

There are several tools that can be used to prove properties at the source code 
level, such as VCC [75], VeriFast [76], and CBMC [77]. However, in this project is
verification at the ISA level desirable. Some interesting tools for verification at the 
ISA level are described in what follows.

The Verified Software Toolchain, VST, [78] is a toolchain that can be used to prove
properties about C programs in the Coq theorem prover. VST uses the formally 
verified C compiler CompCert [63] to guarantee that the properties proved at the 
top-level also hold at the assembly level. CompCert translates a C program to an 
ARM assembly program by means of seven intermediate languages, and the 
reasoning is performed at the third most abstract language of these nine languages 
[79].

BAP [80] can be used to formally verify and analyze binary code for ARM. An 
approach to automatically verify C code with inline ARM assembly by means of 
model checking is described by Fehnker et al. [81].

A method for verifying x86 assembly code is presented by Maus [82] and is similar
to the methods used in other work [73, 74]. Perhaps these methods can be used in 
the context of ARM assembly as well. The operations performed by the CPU are 
described by ghost code. The x86 assembly code is verified by translating it to C 
code by means of the tool Vx86, and the translated C code is then annotated and 
verified automatically in VCC.

Li [83] describes a compiler for a functional language, TFL, that is a subset of the 
HOL4 language. The compiler is implemented and proved correct in HOL4 and 
targets ARM. The user can specify algorithms in TFL, prove properties about them 
in HOL4, and then compile the algorithms to ARM instructions. Since the compiler
is proved to be correct, the proved properties of the algorithms also hold on the 
ARM instructions. It is also described how C programs that only use a small subset
of C can be imported into TFL.
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3 Software Design
This chapter describes the software design of the memory mapping request 
handlers [86], their extensions that consider the operation of the NIC, and the NIC 
register write request handlers. The purposes of these handlers are to enable Linux 
to configure the MMU and the page tables, and the NIC, respectively, but only 
under certain conditions. Namely, these handlers must ensure that the hypervisor, 
the monitor and Linux are securely separated, and that all executable blocks 
contain signed code in the physical memory region allocated to Linux. Otherwise, 
the control of the system is potentially given to Linux or the CPU might execute 
unsigned Linux code.

3.1 Without the Network Interface Controller
To ensure that the software components are securely separated (referred to as the 
separation property) and that the content of all executable blocks is signed 
(referred to as the execution property), these memory regions must be protected. In
the original system without the NIC, all memory accesses go through the MMU, 
which allows or blocks the memory accesses according to the configuration of the 
page tables. Hence, the MMU and the page tables must be protected as well. Since 
only the memory mapping request handlers have access to the MMU and the page 
tables, these handlers are responsible for establishing the separation and execution 
properties. The separation property is established by the hypervisor, and the 
execution property by the monitor.

To be more precise, the resources in the original system that must be protected by 
the memory mapping request handlers are:

• Hypervisor memory: Contains the code, heap and stack of the hypervisor, 
including the parts of the memory mapping request handlers that ensure the
separation property, and the critical data structures τ, ρwt and ρex. The 
memory mapping request handlers depend on τ, ρwt and ρex to preserve the 
separation and execution properties. Other critical code that is also stored in
this memory region is, for instance, the code that returns the CPU to Linux 
in non-privileged mode. This memory region must be protected from both 
Linux and the monitor.

If Linux can read this memory region, Linux could potentially read 
confidential data. If Linux can write into this memory region, Linux can 
change the code of the memory mapping request handlers, and the contents 
of the data structures τ, ρwt and ρex. Such writes can therefore compromise or
circumvent the checks of the memory mapping request handlers to enable 
Linux to execute unsigned code. These writes can also overwrite code in 
the hypervisor such that the CPU is returned to Linux in privileged mode, 
giving Linux complete control of the system.

The monitor is restricted to only being able to read ρwt and ρex. This 
restriction eases the verification of the separation and execution properties, 
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since the verification of these two properties can then be performed 
independently.

• Monitor memory: Contains the part of the code of the memory mapping 
request handlers that ensures the execution property, and the critical golden 
image. This memory region must be protected from Linux. If Linux can 
read this memory region, Linux might get access to confidential data. If 
Linux can write into this memory region, Linux can modify the code of the 
memory mapping request handlers or the golden image, enabling Linux to 
execute arbitrary code.

• Linux memory:

◦ Executable blocks: Contain code that Linux can execute. These blocks 
must be write-protected from Linux and have signed content. Otherwise
Linux can write and execute unsigned code.

◦ Page tables: Contain data determining access permissions of all blocks 
in the physical address space. The page tables must have secure 
configurations and the physical memory blocks containing them must 
be write-protected from Linux and the monitor. Otherwise, Linux can 
write blocks allocated to the hypervisor or the monitor or storing 
executable code. The monitor should not have access to page tables 
since they are a hardware resource maintained by the hypervisor.

• The TTBR0 register: Contains the physical address of the first-level page 
table used by the MMU to start its translation table walks. It must be 
protected from Linux and the monitor, and point to a block of type L1 to 
make the MMU use page tables with secure configurations. Otherwise, 
Linux can potentially take control of the system or execute unsigned code. 
The monitor shall not have access to TTBR0 for the same reasons as for the
page tables.

• The DACR register: Contains the two-bit codes used by the MMU to 
determine how to compute access permissions. Must be protected from 
Linux and the monitor for the same reasons as for the TTBR0 register.

Figure 15 shows where these five resources are located and what they contain in 
the system.

3.2 Threats from the Network Interface Controller
The NIC shall be exclusively used by Linux (not shared with the hypervisor or the 
monitor) such that the NIC device driver in Linux can configure the NIC as it is 
programmed to, provided that the configurations are compatible with the 
separation and execution properties. Normally, the NIC device driver in Linux 
configures the NIC such that the NIC does not violate these two properties. 
However, if the NIC device driver in the Linux kernel or the Linux itself for some 
reason deviate from their ordinary behavior (e.g. due to bugs, or malicious 
software, whose signatures are incorrectly a part of the golden image), they might 
attempt to configure the NIC such that the separation or execution property does 
not hold. Such deviating NIC configurations could enable the NIC to write 
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received frames in any of the four memory regions that the separation and 
execution properties depend on: hypervisor and monitor memory, and blocks in 
Linux memory that are executable or store page tables. Hence, the NIC registers 
that affect which memory accesses the NIC performs must also be protected from 
Linux and the monitor, along with the resources described in the list in the 
previous section. Since the NIC cannot access TTBR0 and DACR, both of which 
are CPU registers, it is sufficient to protect these NIC registers that affect which 
memory accesses the NIC performs, in order to preserve the separation and 
execution properties when the system is extended with the NIC.
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Figure 15: The original software design [86] in the system without the NIC. The 
critical resources that must be protected by the hypervisor are the TTBR0 and 
DACR registers, the blocks containing page tables and executable code in the 
memory region allocated to Linux, and the memory regions allocated to the 
monitor and the hypervisor which contain the golden image, τ, ρwt, ρex, the code of 
the memory mapping request handlers and critical exception handling code of the 
hypervisor. Linux is executed in non-privileged mode and cannot access TTBR0 
nor DACR since these registers are only accessible in privileged mode. Linux can 
only access its own memory region, but not write blocks containing page tables or 
executable code. The monitor is executed in non-privileged mode and cannot 
access TTBR0 nor DACR. The monitor can only access its own memory region, 
read the blocks containing executable code in the memory region allocated to 
Linux, and read the block in the hypervisor that contains ρwt and ρex. The 
hypervisor is executed in privileged mode, can access all resources in the system, 
and maintains τ, ρwt and ρex. The code of the memory mapping request handlers 
executed by the monitor and the hypervisor is located in the memory region 
allocated to the monitor and the hypervisor, respectively.
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Since reads of NIC registers have no side effects that affect which memory 
accesses the NIC performs, it is enough to write-protect the eight registers included
in Figure 9 in Subsection 2.3.2 and the two NIC registers RX_BUFFER_OFFSET 
and DMACONTROL. The operation of the NIC with respect to the eight NIC 
registers included in Figure 9 is described in Subsection 2.3.2, and the latter two 
registers are described in Section C.1. It is writes to these ten NIC registers that the
NIC register write request handlers must check to not violate the separation and 
execution properties. Furthermore, the data structures that the NIC register write 
request handlers depend on must also be write-protected from Linux and the 
monitor. Since the hypervisor manages the hardware and the NIC register write 
request handlers manage the NIC, these handlers are a part of the hypervisor.

The memory mapping request handlers must be extended to prevent blocks that are
writable by the NIC to be allocated to store page tables or mapped as executable.

3.3 Overview of the Software Design
To enable the memory mapping request handlers to be aware of which blocks that 
are writable by the NIC, the data structure ρNIC is introduced. ρNIC takes a block 
index as argument and returns the number of buffer descriptors in the receive 
queue of the NIC that address the block with the given index. Since the NIC only 
writes blocks that are addressed by buffer descriptors in the receive queue, it is 
sufficient for the memory mapping request handlers to test if ρNIC is equal to zero 
for block indexes whose corresponding block is to be allocated to store a page 
table (the block is to be typed by τ as L1 or L2) or mapped as executable (ρex is to 
be incremented for the block). If the entry in ρNIC for the given block index is 
greater than zero, it means that there is at least one buffer descriptor in the receive 
queue of the NIC that address the block with the given index. Hence, the NIC can 
write the block with that index, and therefore the memory mapping request 
handlers must reject requests that specify such blocks to be allocated to store a 
page table or mapped as executable. When a buffer descriptor is added to the 
receive queue, ρNIC is incremented by one for the block index of each block that the
buffer descriptor addresses, and similarly decremented when the buffer descriptor 
is released by the NIC.

To write-protect the ten NIC registers affecting which memory accesses the NIC 
performs from Linux and the monitor, those registers are mapped by the page 
tables as read-only in non-privileged mode. If Linux attempts to write those 
registers, a data abort exception occurs and causes the data abort exception handler
of the hypervisor to execute. The data abort exception handler reads the DFAR 
register (described Subsection 2.3.1) to find out which virtual address Linux 
attempted to write. If the virtual address is mapped to a physical address of a NIC 
register, the data abort exception handler reads the link register to identify the 
virtual address of the instruction whose execution caused the exception. The data 
abort exception handler hands these two addresses to a top-level function of the 
NIC handling code.

From the two given virtual addresses, the top-level function of the NIC handling 
code identifies which NIC register Linux attempted to write and the instruction 
whose execution caused the exception. By parsing that instruction, the value that 
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Linux attempted to write can be computed. The top-level function then gives that 
value to the NIC register write request handler that checks writes to the identified 
NIC register.

Each NIC register write request handler has three tasks:

• Preserve the separation property: Ensuring that the NIC is configured such 
that it does not access blocks allocated to the hypervisor or the monitor and
does not write blocks containing page tables.

This property is preserved by restricting which blocks the transmission and
reception queues of the NIC are allowed to address. For the transmission 
queue, the buffer descriptors are only allowed to address blocks that are 
allocated to Linux. The NIC therefore cannot read confidential data located
in the memory allocated to the hypervisor or the monitor. For the reception
queue, the buffer descriptors are only allowed to address blocks allocated 
to Linux and which do not contain page tables. The NIC therefore cannot 
write blocks allocated to the hypervisor or the monitor or storing page 
tables. The buffer descriptors in the transmission queue are allowed to 
address the page tables since that does not break the separation property 
and it avoids unnecessary restrictions on Linux, although Linux normally 
does not transmit page tables. Hence, the NIC cannot access blocks 
allocated to the hypervisor or the monitor and not write blocks containing 
page tables.

• Preserve the execution property: Ensuring that the NIC is configured such 
that it does not write blocks allocated to the hypervisor or the monitor, or 
containing page tables or executable code. (The contents of all of these 
blocks are relevant for establishing the execution property for the 
following reasons. Blocks allocated to the hypervisor and the monitor 
contain the code of the memory mapping request handlers that establish 
the execution property, or the NIC register write request handlers that 
ensure secure configuration of the NIC. The part of the memory mapping 
request handlers that is located in the hypervisor and is related to the 
execution property is the invocation of the monitor and the handling of the 
response from the monitor. The blocks containing page tables are used to 
restrict Linux from writing into executable blocks, while the executable 
blocks contain code that must be signed. These are the reasons why blocks 
of these four types are necessary to protect.)

The execution property is preserved by means of the restrictions described 
in the previous bullet item (buffer descriptors are only allowed to address 
Linux memory and not write page tables), and by not allowing any buffer 
descriptor in the receive queue to address an executable block. All buffer 
descriptors in the receive queue are allowed to only address blocks whose 
type is D and entries in ρex are equal to zero. Hence, the NIC cannot write 
blocks allocated to the hypervisor or the monitor, or containing page tables
or executable code.

• Preserve the NIC in a defined state: The NIC must always be in a defined 
state. If the NIC enters an undefined state, its operation is unknown and the
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NIC may then potentially perform operations that break the separation or 
execution property. Section 5.1 and Appendix C describe a model of the 
NIC that formally describes when the NIC enters an undefined state. That 
model is used by the proof plan in Chapter 6 to formally verify that NIC 
register write request handlers do not configure the NIC to enter an 
undefined state. The NIC register write request handlers must therefore 
prevent configurations of the NIC that cause the NIC to enter an undefined
state as described by the NIC model.

To ensure that the NIC is always in a defined state, several boolean flag 
variables are used. These flags allow the handlers to know which 
operations the NIC is currently performing. By reading these flags, the 
handlers can avoid configuring the NIC to initiate additional operations 
while the NIC is performing its current operations, which would otherwise 
cause the NIC to enter an undefined state.

If the invoked NIC register write request handler determines that the write Linux 
attempted to perform is compatible with the purposes of the three tasks described 
above, the handler re-executes the write to make it take effect. Otherwise, the 
handler does not perform the write and informs the data abort exception handler of 
this violation. If the write is not performed, it means Linux that deviated from its 
normal behavior. How this situation should be handled depends on how the system 
is used. For instance, the data abort exception handler can return control to Linux, 
reboot Linux, or print an error message and freeze the system.

In the general case when a data abort exception occurs and the virtual address in 
the DFAR register is not mapped to a physical address of a NIC register, it means 
that the data abort exception is not related to a NIC register write. Also, if a data 
abort exception occurs when a Linux application executes, it means that an 
application is attempting to perform privileged operations, since only the Linux 
kernel (specifically the NIC device driver inside the Linux kernel) shall have 
access to the NIC registers. In both of these two cases, if the data abort exception is
not related to the restriction of the monitor that requires blocks to not be both 
writable and executable, the data abort exception is not relevant to the hypervisor 
and the exception is forwarded to the data abort exception handler in the Linux 
kernel (see the descriptions of prefetch and data abort exceptions in Subsection 
2.3.4.1).

There are two additional data structures that deserve special attention in this design
overview section. tx0_active_queue and rx0_active_queue contain the physical 
addresses of the heads of the transmission and reception queues (for DMA 
channels zero which are the only ones Linux uses), respectively. These two queues 
contain all buffer descriptors that are currently in use by the NIC (see Figure 10 in 
Subsection 2.3.2.2). Hence, these two data structures enable the NIC register write 
request handlers to know which parts of CPPI_RAM that are in use by the NIC. 
This information is critical, since the contents of CPPI_RAM affect which memory
accesses the NIC performs. The data structures mentioned in this section and more 
thereto are described in detail in the next section.

Figure 16 shows all critical resources in the software design and in the original 
system extended with the NIC. The three parts of the software design are:
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Figure 16: The software design in the original system extended with the NIC. 
Additional critical resources compared to Figure 15 that must be protected by the 
hypervisor are the NIC registers that affect which memory accesses the NIC 
performs (see Figure 9 in Subsection 2.3.2), the data structures the NIC register 
write request handlers maintains (shown as ρNIC, tx0_active_queue, 
rx0_active_queue and “Other NIC handling data structures”), the code of the 
extended part of the memory mapping request handlers, and the code of the NIC 
register write request handlers. These data structures and the NIC register write 
request handlers are located in the memory region allocated to the hypervisor. 
Only the hypervisor has access to all of these additional resources, except for ρNIC 
which can also be read by the monitor. Since only the monitor's part of the memory
mapping request handlers accesses ρNIC (which only reads ρNIC to prevent blocks 
writable by the NIC to be allocated to store page tables or mapped as executable), 
only the monitor's part of the memory mapping request handlers needs to be 
extended. Also, only the hypervisor executes the NIC register write request 
handlers, which update ρNIC.
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• The data structures that are used by the extended memory mapping and 
NIC register write request handlers.

• The extended memory mapping request handlers (referred only to as the 
memory mapping request handlers for the rest of this thesis).

• The NIC register write request handlers.

These three parts are described in the following three sections.

3.4 Data Structures
The data structures that the memory mapping and NIC register write request 
handlers use are:

• bool initialized

Set to true when the NIC DMA hardware has been reset and the HDP and 
CP registers have been initialized to zero. This means that the NIC has been
initialized. It is set to false when the least significant bit of the 
CPDMA_SOFT_RESET register is written to one to initiate the reset 
operation of the NIC DMA hardware. This variable is used to prevent the 
NIC from entering an undefined state, which occurs if certain NIC registers
are written to initiate certain NIC operations when the NIC has not been 
initialized.

• bool tx0_hdp_initialized, rx0_hdp_initialized, tx0_cp_initialized, 
rx0_cp_initialized

These variables are set to true when the corresponding HDP or CP register 
has been zeroed after the NIC DMA hardware reset operation has 
completed. When all these variables have been set to true, it is known that 
all HDP and CP registers have been initialized, at which point initialized is 
set to true. These variables are set to false when the least significant bit of 
the CPDMA_SOFT_RESET register is set to one. The only purpose of 
these variables is to inform the NIC register write request handlers of when 
initialized shall be set to true.

• bool tx0_tearingdown, rx0_tearingdown

These variables are set to true when the teardown operation of transmission
or reception DMA channel zero is initiated, respectively. That occurs when 
TX_TEARDOWN or RX_TEARDOWN is set to (channel) zero. These 
variables are set to false when the corresponding teardown interrupt is 
acknowledged. A teardown interrupt is acknowledged when the 
corresponding CP register contains 0xFFFFFFFC and it is written with the 
same value. At that point, it is known that the teardown operation has 
completed.
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Figure 17: An example of the status of the data structures rx0_active_queue, ρNIC, 
recv_bd_nr_blocks and α, when the NIC is in a state where it only processes 
received frames. The NIC has processed one buffer descriptor and has two left that
it can use to store received frames. Shaded areas in CPPI_RAM and RAM are not 
accessed by the NIC, and their corresponding entries in ρNIC, recv_bd_nr_block 
and α are also shaded. Since each memory block is addressed by at most one 
buffer descriptor in the queue pointed to by rx0_active_queue, their entries in ρNIC 
are either zero or one. NDP is an abbreviation for next descriptor pointer, BP for 
buffer pointer and BL for buffer length. The Flags field corresponds to the fourth 
word of a buffer descriptor and is not important in this example. NDP is set to the 
32-bit word index of CPPI_RAM for where the next buffer descriptor in the queue 
is located, and ¬NDP means a next descriptor pointer value equal to zero. BP is 
set to the block index of the block containing the start of the data buffer that the 
buffer descriptor addresses. In this figure, NDP and BP use indexes of words in 
CPPI_RAM and blocks in RAM instead of addresses for simplification. For 
recv_bd_nr_blocks and α, only the first 16 entries are shown, since the rest are set 
to zero and false, respectively. The entries in recv_bd_nr_blocks indicate that the 
first buffer descriptor in the queue identified by rx0_active_queue addresses two 
blocks while the following two buffer descriptors only address one block.
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These variables are used to prevent the NIC from entering an undefined 
state. If certain NIC registers are written to initiate certain NIC operations 
while the NIC is performing a teardown operation, the NIC can enter an 
undefined state. In order to prevent such writes, tx0_tearingdown and 
rx0_tearingdown are used to record the state of the NIC with respect to 
teardown operations.

• word32 tx0_active_queue, rx0_active_queue

Contain 32-bit physical addresses of buffer descriptors that are heads of 
buffer descriptor queues used for transmission and reception, respectively. 
These two queues contain all buffer descriptors that are currently in use by 
the NIC for transmission and reception, respectively. The purpose of these 
two variables is to inform the NIC register write request handlers how 
CPPI_RAM is currently used by the NIC. When an HDP register is written 
with a physical address of a buffer descriptor to initiate transmission or 
enable reception, the corresponding variable is set to the same physical 
address. These two variables are then updated by certain NIC register write 
request handlers to bypass buffer descriptors in the queues that have been 
released by the NIC. When the NIC has processed a complete queue, the 
corresponding variable is set to zero. Figure 17 shows an example that 
illustrates the role of rx0_active_queue. Other data structures shown in 
Figure 17 are described by the following bullet items.

• {L1, L2, D, MN, N, ⊥} τ(word20 bl)

τ is a function that takes as argument a block index, bl, of 20 bits, to the 
physical address space, and returns the type of the block with the given 
block index bl, identified by an element in the set {L1, L2, D, MN, N, ⊥}. 
These symbols have the following meaning:

◦ L1, L2: The block is a physical memory block that contains a first- or 
second-level page table that has been verified by the memory mapping 
request handlers. The memory mapping request handlers can therefore 
set TTBR0 to point to a block of type L1 without performing any 
security checks.

◦ D: The block is a physical memory block that contains arbitrary Linux 
data.

◦ MN: The block corresponds to a 4 kB physical address region that 
contains NIC registers that affect which memory accesses the NIC 
performs. Such block indexes are in {0x4A100, 0x4A102, 0x4A103}.

◦ N: The block corresponds to a 4 kB physical address region that contain
NIC registers but none of which affect which memory accesses the NIC
performs. Its index is equal to 0x4A101.

◦ ⊥: The block is outside the memory region allocated to Linux, or the 
block is not mapped by any page table in an L1 or L2 block.

See Figure 18 for an example of the status of τ. Blocks of type L1, L2 or D 
belong to the memory region allocated to Linux, while blocks of type  ⊥
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are not accessible to Linux. τ does not only allow secure and efficient 
switching of page tables when modifying TTBR0, but also efficient 
security checks of several memory mapping and NIC register write 
requests. For instance, if a new receive buffer descriptor only addresses 
blocks not storing page tables. (τ is equal to D for such blocks. Such blocks 
could also potentially be of type , but buffer descriptors normally only ⊥
address blocks that are mapped by the page tables. Hence,  is not ⊥
relevant.)

• word32 ρwt(word20 bl) , ρex(word20 bl), ρNIC(word20 bl)

For a given block index bl, these functions record the following data 
(represented as 32-bit strings):

◦ ρwt and ρex record the number of page table entries in L1 and L2 blocks 
that map the block with index bl as writable and executable for Linux, 
respectively.

◦ ρNIC records the number of buffer descriptors in the queue pointed to by 
rx0_active_queue that address the block with index bl. (See Figure 17.)

These functions simplify the operation of the memory mapping and NIC 
register write request handlers. ρwt and ρex are read by the monitor to check 
that page table configurations do not map blocks as both writable and 
executable to Linux. ρex is read by the NIC register write request handlers to
check that buffer descriptors in the receive queue do not address blocks that
are executable by Linux. ρNIC is used by the memory mapping request 
handlers to check that blocks writable by the NIC are not allocated to store 
page tables (to be typed as L1 or L2; checked by the hypervisor) nor 
mapped as executable (checked by the monitor).

In fact, ρwt and ρNIC can be integrated into a single function to avoid 
modifications of the original memory mapping request handlers. Both ρwt 
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Figure 18: An example of the status of τ. τ is constant for all block indexes that 
correspond to blocks that are outside Linux memory. The NIC registers constitute 
four blocks, where three contain registers that affect which memory accesses the 
NIC performs. Of the blocks allocated to Linux, one is shown as being unmapped 
by the symbol ⊥.
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and ρNIC record the number of write references of a block, and it does not 
matter for the separation and execution properties whether Linux writes a 
block through the CPU or the NIC. The two entries in ρwt and ρNIC for each 
block index can therefore be added with the result stored by a single 
function. However, ρwt and ρNIC are not integrated in this thesis for clarity.

• word32 recv_bd_nr_blocks(word11 i)

The argument i is an 11-bit index of a 32-bit word in CPPI_RAM (which 
consists of 8 kB). It returns the number of blocks addressed by the buffer 
descriptor whose first 32-bit word has the index i in CPPI_RAM. For 
instance, if the first word of a buffer descriptor starts at physical address 
0x4A102000, (first word of CPPI_RAM), the index is zero, and if the first 
word starts at 0x4A102004, the index is one. (See Figure 17.) The entries in
recv_bd_nr_blocks are updated when a buffer descriptor is added to the 
queue pointed to by rx0_active_queue and when rx0_active_queue is 
updated to bypass a buffer descriptor.

This function is used to correctly update ρNIC when rx0_active_queue is 
updated to bypass released buffer descriptors. When a receive buffer 
descriptor is given to the NIC, that buffer descriptor is added to the tail of 
the queue pointed to by rx0_active_queue. At that point, ρNIC is also updated
for the blocks that the added buffer descriptor addresses by reading the 
buffer pointer and buffer length fields of that buffer descriptor. The issue is 
that if a received frame does not fill the data buffer addressed by the buffer 
descriptor, the buffer length field is changed by the NIC to the actual 
amount of data stored in the data buffer. If the frame is small enough, the 
buffer pointer and buffer length fields can indicate that only one block is 
addressed by the buffer descriptor instead of two. Using the buffer length 
field to update ρNIC when rx0_active_queue is updated to bypass released 
buffer descriptors could therefore result in that ρNIC have incorrect values. 
recv_bd_nr_blocks is used to solve this problem.

• bool α(word11 i)

The argument is an index to a 32-bit word in CPPI_RAM (as for 
recv_bd_nr_blocks) and the return value is true if and only if the identified 
32-bit word is a part of any buffer descriptor in the queues pointed to by 
tx0_active_queue and rx0_active_queue. (See Figure 17.) If Linux attempts
to write a buffer descriptor that is in use by the NIC, then that write might 
affect which memory accesses the NIC will perform. Hence, such writes 
must be checked to not break the separation and execution properties. By 
reading α, the NIC register write request handlers can easily and efficiently 
check whether Linux attempts to write a buffer descriptor that is in use by 
the NIC. If Linux attempts to write a buffer descriptor that is not in use by 
the NIC, no checks are necessary and the write can be re-executed. α is 
updated when buffer descriptors are added to the queues pointed to by 
tx0_active_queue and rx0_active_queue and when these two variables are 
updated to bypass released buffer descriptors.

• <wordx> GI
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The golden image is a set of bit strings of length x. Each bit string is a 
signature of code of size 4 kB (size of a block). Each signature in the 
golden image represents code that is trusted by the user of the system. x 
shall be replaced by the actual bit string length of a signature.

3.5 Memory Mapping Request Handlers
The memory mapping request handlers are hypercalls invoked by Linux when 
Linux allocates, deallocates and modifies its page tables, and switches the first-
level page table identified by TTBR0. They ensure that configurations of page 
tables respect the separation and execution properties, and that TTBR0 points to a 
validated page table. This section describes these original handlers [86], and their 
extensions needed in the presence of the NIC. The extensions consist of additional 
requirements that the memory mapping request handlers must check to be satisfied 
in order for the execution of a memory mapping request to not break the separation
and execution properties. The memory mapping request handlers are described 
more formally in Section B.2.

The handlers operate on the data type ideal_state that is used in Section 5.3 to 
define a model that in turn is used in the proof plan in Chapter 6. Instances of this 
data type contain the state of the hardware and the state of the data structures 
described in the previous section. The second component of the returned tuple is a 
flag that is true if and only if the handler executed the given request.

The memory mapping request handlers are the following functions:

• (ideal_state, bool) switch(ideal_state i, word20 bl)

Switches the first-level page table that the MMU uses to the one contained 
in the block with index bl. This function checks that τ(bl) = L1, meaning 
that the new page table has been validated.

• (ideal_state, bool) freeL1(ideal_state i, word20 bl),
(ideal_state, bool) freeL2(ideal_state i, word20 bl)

Changes the type of the block with index bl from L1/L2 to D. Linux and the
NIC are then allowed to write that block if it is not executable (ρex(bl) = 0). 
If τ(bl) = L1, then TTBR0 must not point to that block. Otherwise, the 
MMU could potentially use a first-level page table that Linux and the NIC 
can write. If τ(bl) = L2, then must no second-level page table link entry 
(called ”Page table” in Figure 8 in Subsection 2.3.1) in a page table in any 
L1 block refer to the block with index bl. Otherwise, the MMU could 
potentially use a second-level page table that Linux and the NIC can write.

• (ideal_state, bool) unmapL1(ideal_state i, word20 bl, word10 e),
(ideal_state, bool) unmapL2(ideal_state i, word20 bl, word10 e)

Frees the page table entry with index e in the page table in the L1/L2 block 
with index bl. That block must not be executable (ρex(bl) = 0). Otherwise, 
this function could potentially modify the block such that it contains 
unsigned code, which would then be executable by Linux.

• (ideal_state, bool) linkL1(ideal_state i, word20 bl, word10 e, word20 bl')
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Sets the page table entry with index e in the page table in the L1 block with 
index bl to point to the second-level page table in the L2 block with index 
bl'. That is, the first-level page table in the former block gets a link to the 
second-level page table in the latter block. For this operation to be 
executed, ρex(bl) = 0  ∧ τ(bl') = L2 must hold. The former conjunct ensures 
that this operation does not make an executable block contain unsigned 
code. The block with index bl' must be of type L2 to ensure that it has been 
validated. Otherwise, the MMU could potentially use an unvalidated 
second-level page table, which might not respect the separation and 
execution properties.

• (ideal_state, bool) mapL1(ideal_state i, word20 bl, word10 e, word20 bl',
bool rd, bool wt, bool ex),

(ideal_state, bool) mapL2(ideal_state i, word20 bl, word10 e, word20 bl',
bool rd, bool wt, bool ex)

Sets the page table entry with index e in the page table in the L1/L2 block 
with index bl to point to the block with index bl' with read, write and 
execute access permissions as indicated by rd, wt and ex, respectively. Such
an entry is called ”Section”/”Small page” in Figure 8 in Subsection 2.3.1. If
τ(bl) = L1, then 256 consecutive blocks are mapped starting at the location 
of the block with index bl', all with the same access permissions. For each 
block that gets mapped as writable or executable, its entry in ρwt or ρex is 
incremented by one, respectively. In what follows, bl'' denotes the index of 
a mapped block (including bl').

For a request to be executed, it must satisfy the following requirements:

◦ The block is of type L1/L2: τ(bl) = L1/L2. This requirement prevents the
handlers from wrongly believing that the block with index bl is storing 
a page table when it actually represents NIC registers or is allocated to 
the hypervisor or the monitor. Hence, this requirement prevents the 
handlers from writing NIC registers or memory blocks allocated to the 
hypervisor or the monitor. Such writes might otherwise make the NIC 
enter an insecure state, or change code or data structures of the 
hypervisor or the monitor.

◦ The block with index bl is not executable: ρex(bl) = 0. This requirement 
ensures that these two handlers do not modify executable blocks such 
that they contain unsigned code.

◦ Blocks mapped as executable have signed contents:

ex  ⇒ sign(content(i.memory, bl''))  ∈ GI.

content is a function that takes as arguments the state of the memory in 
the ideal state i, containing information of memory contents, and a 
block index bl''. content then returns the bit string stored in the 4 kB 
block with index bl'' in the ideal state i. content is formally defined in 
Section 6.1. sign is the function used by the monitor to compute 
signatures of block contents to determine whether the corresponding 
code is signed or not. (sign is described in subsection 5.3.3.) This 

59



requirement ensures that blocks becoming executable contain signed 
code.

◦ Blocks must belong to the physical memory region allocated to Linux 
or to NIC registers:

bl''  ∈ LINUX_BL  ∨ τ(bl'')  {∈ MN, N}.

LINUX_BL contains the block indexes of all physical memory blocks 
allocated to Linux. This requirement prevents Linux from accessing 
memory allocated to the hypervisor or the monitor.

◦ Executable blocks must not be writable:

ex  ¬⇒ wt  ∧ ρwt(bl'') = 0.

Prevents Linux from writing and then executing unsigned code.

◦ Writable blocks must not be executable nor used to store page tables:

wt  ¬⇒ ex  ∧ ρex(bl'') = 0  ∧ τ(bl'')  {∉ L1, L2}.

Prevents Linux from writing and executing unsigned code and changing
access permissions in page tables to take control of the system.

◦ Blocks corresponding to NIC registers affecting which memory 
accesses the NIC performs must not be writable:

wt  τ⇒ (bl'') ≠ MN.

Prevents Linux from configuring the NIC to enter an insecure state.

◦ Executable blocks must not be written by the NIC:

ex  ⇒ ρNIC(bl'') = 0.

Prevents the NIC from writing unsigned code.

◦ NIC registers must not be executable:

ex  ⇒ τ(bl'')  {∉ MN, N}.

This requirement prevents the CPU from interpreting the contents of 
NIC registers as executable instructions. If the CPU interprets the 
contents of NIC registers as instructions and executes them, Linux 
could potentially execute unsigned code, since the NIC can change the 
contents of those registers.

• (ideal_state, bool) createL1(ideal_state i, word20 bl),
(ideal_state, bool) createL2(ideal_state i, word20 bl)

Sets the block with index bl to be of type L1/L2, to enable the page table in 
it to be used by the MMU. The physical blocks that get mapped by the page
table entries in the page table in the block with index bl get their entries in 
ρwt and ρex updated accordingly.

The block with index bl must satisfy the following requirements:

◦ Each page table entry in the page table in the block must be checked as 
an individual entry is checked by mapL1/mapL2 (see the requirements 
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of mapL1/mapL2 that mention mapped blocks denoted by bl''). This 
requirement ensures that an individual entry of a new page table that is 
mapping a memory block is secure with respect to the separation and 
execution properties.

◦ If the type of the block is to be set as L1, all second-level page table 
link entries in the page table in the block must point to L2 blocks. This 
requirement ensures that if the page table in the block is used as a first-
level page table by the MMU, the MMU will only use validated page 
tables.

◦ No entry in the page table in the block maps a block as writable if 
another entry in that page table maps the same block as executable, and 
vice versa. This requirement ensures that a single page table does not 
map a block as both writable and executable. (mapL1/mapL2 only 
check that an individual entry does not map a block as both writable 
and executable.)

◦ The block belongs to the physical memory region allocated to Linux 
and is currently not mapped as writable: bl  ∈ LINUX_BL  ∧ ρwt(bl) = 0; 
and the page table in the block does not map itself as writable. Hence, 
Linux cannot write newly allocated page tables. Also, the design 
requires page tables to be located in memory allocated to Linux, which 
is where Linux normally allocates page tables.

◦ The block must not be writable by the NIC: ρNIC(bl) = 0. This 
requirement prevents allocation of blocks writable by the NIC to be 
used to store page tables.

Since the block is required to be a part of Linux memory (second last 
requirement), it is not necessary to check that the block does not represent 
NIC registers. If the contents of NIC registers were interpreted by the 
MMU as page table entries, the NIC could potentially modify page table 
entries to break the separation and execution properties, since the NIC can 
modify the contents of its registers.

3.6 NIC Register Write Request Handlers
The NIC register write request handlers check writes to the NIC registers affecting 
which memory accesses the NIC performs. The handlers are invoked by the data 
abort exception handler of the hypervisor when Linux attempts to write such a NIC
register, all of which are write-protected by the page tables. If an attempted write 
respects the separation and execution properties and does not configure the NIC to 
enter an undefined state, the hypervisor re-executes the write, and otherwise not. 
The NIC register write request handlers are completely specified in pseudocode, 
with the most important parts included in Sections B.3 and B.4.1.

The argument and return values of the NIC register write request handlers have the 
following meaning. The data type ideal_state has the same role as in the case with 
the memory mapping request handlers. Each handler as an argument called val, 
bd_ptr or channel and which is the value that Linux attempted to write to a NIC 
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register. One handler handles writes to several NIC registers and another one 
handles writes to CPPI_RAM. These two handlers have an additional argument, 
pa, which is the physical address of the NIC register or location in CPPI_RAM 
Linux attempted to write. The return flag is true if and only if the handler re-
executed the write.

The NIC register write request handlers are the following functions:

• (ideal_state, bool) cpdma_soft_reset_handler(ideal_state i, word32 val)

This handler checks that Linux does not write the CPDMA_SOFT_RESET 
register such that the NIC enters an undefined state, according to the NIC 
model described in Section 5.1 and Appendix C. For this purpose, this 
handler reads the flags initialized, tx0_tearingdown and rx0_tearingdown. 
If CPDMA_SOFT_RESET is written to initiate the reset operation of the 
NIC DMA hardware, all five initialization variables are set to false.

• (ideal_state, bool) cppi_ram_handler(ideal_state i, word32 pa, word32 val)

When Linux attempts to write CPPI_RAM, this handler checks that the 
write is of one of the following two types:

◦ Linux attempts to write a 32-bit word in CPPI_RAM that is not a part 
of any buffer descriptor that is in use by the NIC: Linux performs these 
writes when it is initializing buffer descriptors that shall later be given 
to the NIC. Since the word is not in use by the NIC, these writes are not
a security threat. This type of write is checked by reading α.

◦ Linux attempts to write the 32-bit word that is the next descriptor 
pointer field of the last buffer descriptor in the queue pointed to by 
tx0_active_queue or rx0_active_queue: Linux performs these writes 
when it extends the transmission or reception queues.

The new buffer descriptors must only address physical memory 
allocated to Linux, and for buffer descriptors to be added to the receive 
queue, they must only address non-executable blocks of type D. Hence, 
the NIC can only access Linux memory but not write page tables nor 
executable blocks. Also, buffer descriptors in use by the NIC are not 
allowed to overlap each other to prevent the NIC from rewriting their 
contents. The NIC writes certain buffer descriptor fields after frames 
have been transmitted and received (see description of NIC 
management fields in Subsection 2.3.2.2). If two buffer descriptors 
overlap, writes to certain fields of the first buffer descriptor can 
potentially change certain fields of the second buffer descriptor. Hence, 
such writes can potentially change which blocks the second buffer 
descriptor addresses. The NIC might then perform memory accesses 
that break the separation or execution properties, or perform operations 
that cause it to enter an undefined state. This issue is also discussed in 
Subsection 5.1.3.2.

These two checks of accessed memory and non-overlapping of buffer 
descriptors are performed by reading α, τ and the buffer descriptors in 
the queues pointed to by tx0_active_queue, rx0_active_queue and val 
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(which points to the queue with the new buffer descriptors). If the write 
is re-executed, α is updated, and if the new buffer descriptors are added 
to the receive queue, ρNIC and recv_bd_nr_blocks are also updated.

It is desirable to make the handlers as simple as possible since they are 
intended to be formally verified, which therefore simplifies the verification 
task. To make this handler as simple as possible, this handler only allows 
these two types of writes. Since Linux does not perform any other types of 
writes to CPPI_RAM, this restriction is not a practical problem.

• (ideal_state, bool) tx0_hdp_handler(ideal_state i, word32 bd_ptr),
(ideal_state, bool) rx0_hdp_handler(ideal_state i, word32 bd_ptr)

These two handlers check the two types of writes Linux performs to the 
TX0_HDP and RX0_HDP registers:

◦ Linux attempts to initialize the NIC: After the NIC DMA hardware has 
been reset, the HDP registers should be initialized to zero. These two 
handlers check that these two registers are correctly initialized without 
causing the NIC to enter an undefined state. The checks are satisfied 
when initialized is equal to false, the least significant bit of the 
CPDMA_SOFT_RESET register is equal to zero (cleared by the NIC 
when it has completed the reset operation), and bd_ptr is equal to zero 
(the value Linux attempts to write). At that point, it is known that the 
NIC DMA hardware has been reset and that Linux attempts to reset an 
HDP register. Hence, these handlers write zero to TX0_HDP or 
RX0_HDP, and set tx0_hdp_initialized or rx0_hdp_initialized to true, 
respectively. If the four initialization flags of the HDP and CP registers 
are all true, initialized is also set to true.

◦ Linux attempts to initiate transmission or enable reception: When Linux
writes these two registers to initiate transmission or enable reception, it 
must be checked that the NIC has been initialized and that all buffer 
descriptors in the queue pointed to by bd_ptr are secure. The NIC is 
checked to be initialized by checking that initialized is true. All buffer 
descriptors are checked to be secure by performing the same checks as 
performed in cppi_ram_handler when Linux extends a transmission or 
reception queue.

• (ideal_state, bool) tx0_cp_handler(ideal_state i, word32 val),
(ideal_state, bool) rx0_cp_handler(ideal_state i, word32 val)

These two handlers check the three types of writes Linux performs to the 
TX0_CP and RX0_CP registers:

◦ Linux attempts to initialize the NIC: TX0_CP and RX0_CP shall also 
be written to zero after a NIC DMA hardware reset operation. This 
check is nearly identical to the corresponding one performed by 
tx0_hdp_handler and rx0_hdp_handler, but with the roles of the HDP 
registers and the HDP initialization flags replaced by the CP registers 
and the CP initialization flags.
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◦ Linux attempts to acknowledge a teardown interrupt: The purpose of 
this check is to record when a teardown operation is complete in order 
to falsify the corresponding teardown operation flag, tx0_tearingdown 
or rx0_tearingdown. If the corresponding flag is true, the corresponding
CP register contains 0xFFFFFFFC, and val is equal to 0xFFFFFFFC, it 
means that the corresponding teardown operation is complete and that 
Linux attempts to acknowledge the corresponding teardown interrupt. 
In such a case, the corresponding teardown operation flag is falsified.

◦ Linux attempts to perform another write: If Linux does not attempt to 
perform any of the other two types of writes to the CP registers, these 
two handlers check that the write does not cause the NIC to enter an 
undefined state. Rejected writes are the ones attempted when the NIC 
performs a NIC DMA hardware reset or teardown operation, or having 
incorrect initialization or teardown interrupt acknowledgement values.

• (ideal_state, bool) tx_teardown_handler(ideal_state i, word32 channel),
(ideal_state, bool) rx_teardown_handler(ideal_state i, word32 channel)

These two handlers check that writes to the TX_TEARDOWN and 
RX_TEARDOWN registers do not cause the NIC to enter an undefined 
state. A write is performed to these registers if and only if the NIC has been 
initialized, the teardown operation to initiate is currently not in progress, 
and the DMA channel Linux attempts to tear down has the index zero (the 
NIC model only describes the operations of the DMA channels zero since 
Linux only uses those two channels; that is, teardowns of DMA channels 
with other indexes cause the NIC to enter an undefined state according to 
the NIC model). These check are performed by checking that initialized is 
true, the corresponding teardown operation flag, tx0_tearingdown or 
rx0_tearingdown, is false, and channel is zero. If the write is performed, 
the corresponding teardown operation flag is also set to true, to record that 
the NIC is now performing the corresponding teardown operation.

• (ideal_state, bool) dmacontrol_handler(ideal_state i, word32 val),
(ideal_state, bool) rx_buffer_offset_handler(ideal_state i, word32 val)

These two handlers check that Linux does not modify the DMACONTROL
and RX_BUFFER_OFFSET registers. The purpose is to prevent the NIC 
from entering an undefined state. Since Linux does not write these 
registers, this restriction is not a practical problem.

• (ideal_state, bool) stateram_handler(ideal_state i, word32 val)

This handler pretends to initialize the HDP and CP registers for all other 14 
NIC DMA channels (having indexes one to seven for transmission and 
reception). Since those channels are unused by Linux, except when Linux 
initializes the NIC, they are not described by the NIC model. Writes to 
these registers are therefore blocked to prevent the NIC from entering an 
undefined state. The return flag is still set to true, pretending the writes 
were performed.
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• (ideal_state, bool) write_nic_register_handler(ideal_state i, word32 pa,
word32 val)

This handler unconditionally re-executes writes to NIC registers Linux 
attempts to write and which do not affect which memory accesses the NIC 
performs. This handler is invoked when Linux attempts to write a register 
whose physical address belongs to the same block as the physical address 
of a register that affects which memory accesses the NIC performs. Since 
registers in the same block have the same access permissions, writes to the 
former type of register cause unnecessary data abort exceptions. This 
handler therefore just re-executes such writes.

3.7 Conclusion and Discussion
There are two important characteristics of this design. First, the design allows a 
practical implementation. The usage of data abort exceptions to invoke the NIC 
register write request handlers makes these handlers invisible to the NIC device 
driver in Linux. Hence, the NIC device driver does not need to be modified. Also, 
the implementation of all NIC handling code is decoupled from the rest of the 
hypervisor. Only the data abort exception handler of the original hypervisor must 
be extended. It must be extended with:

• Two CPU register reads to retrieve the necessary information: The DFAR 
register must be read to identify which virtual address the CPU attempted 
to access when the data abort exception occurred, in order to determine if a
NIC register was accessed, and if so, which NIC register. Also, the link 
register must be read to identify the instruction whose execution caused the
data abort exception, in order to determine which value the CPU attempted
to write (to a NIC register).

• Two checks to determine whether the NIC handling code must be invoked:
If the accessed virtual address causing the data abort exception is mapped 
to a NIC register and the Linux kernel is currently being executed (as 
opposed to a Linux application), then the NIC handling code shall be 
invoked and otherwise not.

• One function invocation of the NIC handling function.

• Possibly code checking and handling rejected NIC register writes.

Second, the data buffers that the buffer descriptor addresses does not need to be 
copied from Linux memory to hypervisor memory. The reason is that the operation
of the NIC is independent of memory contents, and therefore can Linux write 
anything in the data buffers without affecting the separation and execution 
properties. However, as Table 1 in Section 4.3 shows and as discussed in Section 
4.4, this design incurs some overhead that probably can be reduced by 
paravirtualizing the NIC device driver in Linux.

Since the separation and execution properties are normally not violated by Linux, 
these two properties do not prevent Linux from performing its ordinary operations. 
Hence, Linux is just as functional in a system with the hypervisor and the monitor 
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as without them, excluding possible performance impacts from the hypervisor and 
the monitor.

Subsection 2.5.1 mentions three hypervisor designs for giving guests access to I/O 
devices. The design presented in this chapter for giving Linux access to the NIC is 
emulation, since the original NIC device driver in Linux is unmodified and 
interference with the hypervisor and the monitor is prevented by hypervisor 
software. In general, a hypervisor might be designed to provide support for 
allowing several guests to share the same I/O device. This is not needed for the 
design presented in this chapter since only Linux is given access to the NIC. 
Hence, the NIC register write request handlers need only ensure that the NIC is 
configured such that it respects the separation property (establishing the execution 
property is in general not a task of a hypervisor). The NIC register write request 
handlers are therefore relatively simple compared to the case of allowing several 
guests to share the NIC. However, there are also hypervisors, as described in 
Subsection 2.5.1, that do not support sharing nor separation (that is, their guests are
trusted and given direct access to the I/O devices without hardware ensuring the 
I/O device accesses are secure). Section 4.4 describes how the hypervisor design 
could change in the case when the hardware implements the ARMv7 virtualization 
extensions or a system memory management unit. In such cases the execution time
and network performance would be improved, and the system memory 
management unit would make the NIC register write request handlers unnecessary.

Some hypervisor designs also have a large trusted code base, hence affecting the 
reliability of the separation. For instance, the Xen hypervisor have a guest 
operating system, often Linux, that handles the configuration of the I/O devices 
[93]. The other ordinary guests communicate with this device driver guest when 
they need to access an I/O device. Hence, the trusted code base in such a system is 
the code in the Xen hypervisor plus the code in the Linux kernel. It is the Linux 
kernel that the design presented in this chapter attempts to secure (and the 
applications running on top of it)!
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4 Implementation
This chapter describes the modifications of the hypervisor and the paravirtualized 
Linux 3.10 kernel that were made to implement the NIC register write request 
handlers in the hypervisor and to enable Internet access in Linux when Linux is 
executed on top of the hypervisor. Section 4.1 describes how the NIC register write
request handlers are implemented in the hypervisor. Section 4.2 describes how the 
hypervisor and Linux were modified to enable Internet access in Linux. Section 4.3
presents network performance results. Section 4.4 discusses how the network 
performance can be improved.

4.1 Management of the NIC in the Hypervisor
The implementation in the hypervisor for giving Linux secure NIC access follows 
the design of the NIC register write request handlers described in Section 3.6. 
Since the design specifies the NIC register write request handlers to be invoked by 
the data abort exception handler when the execution of Linux attempts to write the 
NIC registers, no modifications of the Linux kernel were necessary with respect to 
NIC register accesses. The NIC registers are located in the physical address range 
[0x4A100000, 0x4A104000) which constitutes four blocks each of 4 kB. The 
address range of the first and the last two blocks addresses NIC registers affecting 
which memory accesses the NIC performs. Those three blocks are therefore 
mapped with read-only access permission to the CPU in non-privileged mode. 
Such a mapping causes the CPU to take a data abort exception if the CPU executes
Linux and attempts to write a NIC register affecting which memory accesses the 
NIC performs. The NIC registers addressed by the address range of the second 
block do not affect which memory accesses the NIC performs. That second block 
is therefore mapped with read-write access permission to the CPU in non-
privileged mode. The CPU can thus write those NIC registers when it executes 
Linux.

The Linux kernel as configured in this project has a region in its virtual address 
space at [0x80000000, 0xFF000000) that is allocated for static memory mappings 
(a virtual address in that region is always mapped to the same physical address). 
The NIC registers are mapped from such a static virtual memory region to ease the 
implementation. To prevent the virtual memory region mapping the NIC registers 
to overlap virtual memory regions mapping registers of other I/O devices, such as 
the timer and the interrupt controller, the NIC registers are mapped from the virtual
address range [0xFA400000, 0xFA404000), as illustrated in Figure 19. This 
mapping is configured during the execution of the boot code of the hypervisor. The
execution of that boot code also initializes the NIC by resetting the NIC DMA 
hardware followed by zeroing all 16 HDP and CP registers, making the NIC enter a
defined idle state.

4.2 Internet Access in Linux
The following modifications were done to the paravirtualized Linux 3.10 kernel to 
provide its applications with Internet access:
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• Inclusion of the Linux networking code in the executable Linux image: 
This was done by extending the configuration file specifying which 
features of the Linux kernel that shall be included in the compilation. Only 
the necessary networking code is included.

• Insertion of three hypercall invocations in the Linux source code: When the
CPU executes Linux in non-privileged mode, the added networking code 
causes the CPU to take exceptions due to attempts of performing privileged
operations related to cache management and branch prediction. Hypercall 
invocations of hypervisor routines were therefore inserted in Linux to make
the CPU perform those privileged operations.

• Specification of which virtual addresses the NIC device driver in Linux 
shall use to access the NIC registers: A list storing hardware related data 
structures was extended with one entry to make the NIC device driver in 
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Figure 19: The virtual to physical address mapping of the NIC registers in the 
implementation. In non-privileged mode, in which Linux is executed, the address 
range of the three blocks addressing NIC registers, which affect memory accesses, 
is mapped as read-only. The address range of the block addressing only NIC 
registers not affecting memory accesses is mapped as readable and writable.
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Linux use the virtual address range [0xFA400000, 0xFA404000) to access 
the NIC registers.

The following modifications were done to the hypervisor to give Linux Internet 
access:

• Implementation of the two hypercalls related to the cache management: For
simplicity, these two hypercalls were implemented in C by following the 
cache management assembly code in Linux. Worth to note is that the 
invocation of one of these two hypercalls results in deletion of cache line 
entries. That hypercall must not delete cache lines holding data belonging 
to the memory regions allocated to the hypervisor or the monitor. 
Otherwise hypervisor and monitor data structures can be corrupted. (The 
hypercall related to branch prediction was already implemented.)

• Forwarding NIC interrupts to Linux: In order to forward NIC interrupts to 
Linux, the boot code of the hypervisor was extended to enable the four 
interrupt lines assigned to the NIC. The boot code was also extended to 
specify that when a NIC interrupt occurs, the hypervisor shall forward that 
NIC interrupt to the irq exception handler of Linux.

4.3 Network Performance
The network performance for Linux applications when Linux is executed on top of 
the hypervisor was measured with the tool netperf [94]. BBB was connected to a 
PC server with a point-to-point link of 100 Mbit/s, where netperf 2.7.0 was used in 
Linux on BBB and netperf 2.6.0 in the PC server. The following benchmarks were 
performed:

• TCP_STREAM: Transfers data with TCP from netperf in Linux on BBB to 
netperf in the PC server.

• TCP_MAERTS: Transfers data with TCP from netperf in the PC server to 
netperf in Linux on BBB.

• UDP_STREAM: Transfers data with UDP from netperf in Linux on BBB 
to netperf in the PC server.

• TCP_RR: TCP is used to send a request from netperf in Linux on BBB to 
netperf in the PC server which responds to the request. Such a transaction 
can be considered as a ping test between two Linux applications involving 
no processing time at the end nodes.

• UDP_RR: As TCP_RR but with UDP.

Each benchmark was run in four different system configurations:

• The original non-paravirtualized Linux 3.10 kernel is executed natively by 
the CPU without involving the hypervisor or the monitor: Benchmarks run 
in this system configuration measure the network performance for Linux 
applications in an ordinary system configuration.

• Paravirtualized Linux executed on top of the hypervisor and alongside the 
monitor with read-write access to the NIC registers: This means that the 
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CPU when executing Linux can write any NIC register without causing an 
exception and a related security check. Benchmarks run in this system 
configuration measure the network performance for Linux applications by 
including the execution overhead of the hypervisor and the monitor, except 
the execution overhead caused by exceptions and executions of security 
checks related to NIC register writes.

• Paravirtualized Linux executed on top of the hypervisor and alongside the 
monitor with read-only access to the NIC registers affecting memory 
accesses, but where the execution of the data abort exception handler of the
hypervisor immediately performs the NIC register write without any 
security checks: Benchmarks run in this system configuration measure the 
network performance for Linux applications when the execution overhead 
is included of the exceptions caused by writes to the address range of the 
three blocks addressing NIC registers affecting memory accesses.

• Paravirtualized Linux executed in the system configuration implementing 
the software design: Benchmarks run in this system configuration measure 
the network performance for Linux applications when the total execution 
overhead of the hypervisor and the monitor is included.

For each of the four system configurations, each benchmark was run successively 
five times. The results are collected in Figures 20 through 23, where the lowest 
value (worst result) was selected from the five benchmark tests. (For each set of 
five benchmark tests, all results were fairly close to each other. The selected value 
is therefore reasonably representative.) Notable is that the network performance is 
similar in all virtualized system configurations (denoted RW, ROX and V). When 
the message size (amount of data passed from netperf to the Linux kernel in a 
single send system call) is between 32 bytes and 512 bytes in the data transferring 
benchmarks (TCP_STREAM, TCP_MAERTS and UDP_STREAM), the 
throughput ratio for Linux applications is between 0.5% and 10% when Linux is 
executed in a virtualized system configuration compared to when Linux is 
executed natively. For message sizes between 1024 bytes and 16384 bytes, the 
throughput ratio is between 7% and 42%. For the application ping benchmarks 
(TCP_RR and UDP_RR), the transaction ratio is between 19% and 24%.

4.4 Conclusion and Discussion
This chapter demonstrates that the NIC register write request handlers work in 
practice, and that the network performance provided to Linux applications is 
limited. In many applications of embedded systems, where fairly small amounts of 
data are transferred, the network performance is probably sufficient. For mobile 
devices this solution is of limited use, and for multimedia applications and most 
data communications equipment this solution is probably of no use.

Since the network performance is similar in all virtualized system configurations, 
the exceptions and security checks related to NIC register writes have a small 
impact on network performance. Hence, the first network performance limitation 
seems to be the execution of Linux in non-privileged mode causing exceptions and 
overhead execution of the hypervisor and the monitor when the execution of Linux
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Figure 20: Results from the TCP_STREAM benchmark tests. For message sizes 
increasing from 32 bytes to 512 bytes, the throughput ratio for Linux applications 
increases from 0.5% to 4% when Linux is executed in the virtualized system 
configurations (RW, ROX, V) compared to when Linux is executed in the native 
system configuration (N). For message sizes increasing from 1024 bytes to 16384 
bytes, the throughput ratio increases from 7% to 12%.

32 64 128 256 512 1024 2048 4096 8192 16384
0

10
20
30
40
50
60
70
80
90

100

TCP_STREAM

N

RW

ROX

V

Message size (bytes)

T
h

ro
u

g
h

p
u

t (
M

b
it/

s)

Figure 21: Results from the TCP_MAERTS benchmark tests. The throughput ratio 
is between 36% and 42% for Linux applications in the virtualized system 
configurations compared to Linux applications in the native system configuration. 
(No TCP_MAERTS benchmark tests were performed for other message sizes since 
netperf does not support varying message sizes for the TCP_MAERTS benchmark.)
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Figure 22: Results from the UDP_STREAM benchmark tests. For message sizes 
between 32 bytes and 512 bytes, the throughput ratio is approximately 9% for 
Linux applications in the virtualized system configurations compared to Linux 
applications in the native system configuration. For message sizes of 1024 bytes or
2048 bytes the throughput ratio is approximately 14%, and for message sizes 
between 4096 bytes and 16384 bytes the throughput ratio is approximately 21%.
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Figure 23: Results from the TCP_RR and UDP_RR benchmark tests. For 
TCP_RR, the transaction ratio is between 19% and 22% for Linux applications in 
the virtualized system configurations compared to Linux applications in the native 
system configuration. For the UDP_RR benchmark, the transaction ratio is 
between 20% and 24%.
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needs to perform privileged operations (e.g. configuring the memory mapping of 
Linux via the memory mapping request handlers).

ARM specifies the optional virtualization extensions (VE) to the ARMv7 
architecture [33] (which are not implemented in BBB). VE includes an additional 
privilege level and a second stage of address translation. Code executed in the 
additional privilege level has complete control of the system and is used to execute
a hypervisor. A hypervisor can then isolate itself and the guest systems from each 
other by configuring the page tables of the second address translation stage such 
that the guest systems can only access their own memory regions and not configure
I/O devices. This allows operating systems to be executed on top of a hypervisor 
without being modified, saving significant implementation efforts.

Raho et al. [95] presents benchmark results for guest systems executed on top of 
Xen and KVM (a hypervisor based on the Linux kernel) and for Linux executed 
natively. The used hardware is ARMv7 with VE. The execution time for the guest 
systems on top of Xen or KVM is at most 5% longer than the execution time of 
Linux executed natively. For message sizes of 64 bytes or greater, the throughput 
for all systems reached the maximum level. For the TCP_RR and UDP_RR 
benchmarks, the transaction ratio is between 67.5% and 76%.

If VE is used, the overhead from hypervisor invocations is probably reduced, but to
which extent is unclear with current facts. The hypervisor and the monitor must 
still be invoked when a Linux block is to be mapped as executable. The reason is 
that the monitor must check that the signature of the content of the block is in the 
golden image and that the NIC cannot write the block. If that is the case the 
hypervisor must ensure that the page tables of the second address translation stage 
map the block as executable. Similarly, when a Linux block is to be mapped as 
writable, the hypervisor must be invoked to ensure that the page tables of the 
second address translation stage do not map the block as executable. Hence, the 
second address translation stage seems to be of limited use in this context, of 
ensuring execution of only signed Linux code by means of a hypervisor and a 
monitor. However, the additional privilege level of VE might provide functionality 
that make unnecessary the hypervisor invocations related to cache management, 
branch predication, interrupts, and other primitive privileged operations such as 
reading the TTBR0 register. If these operations are performed often, VE might be 
used to significantly improve the execution time.

Even if VE enables significant improvements in execution time, the network 
performance might not be improved due to the exceptions and security checks of 
NIC register writes. Some of this overhead can be reduced. To transmit or process 
a received frame, the NIC device driver in Linux attempts to perform nine NIC 
register writes. In addition to a few other operations, each such write causes the 
following operations:

• A CPU exception involving 17 writes to memory (or cache) for saving the 
contents of the 16 user mode registers and CPSR.

• Execution of a NIC register write request handler. Apart from the actual 
execution overhead of the security checks, this execution might cause 
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additional overhead if the memory accesses performed during this 
execution cause cache misses when the execution of Linux is resumed.

• An exception return involving 17 reads from memory (or cache) for 
restoring the contents of the 16 user mode registers and CPSR.

Since the NIC device driver in Linux attempts to perform seven of the nine NIC 
register writes in consecutive sequence, it is easy to modify the NIC device driver 
in Linux and the NIC handling code in the hypervisor such that the number of 
exceptions per transmitted or received frame is reduced from nine to three. Such a 
reduction can be achieved by implementing a hypercall invocation in the NIC 
device driver in Linux and a corresponding hypercall in the hypervisor. The 
hypercall invocation in the NIC device driver in Linux can store all seven values to
write and the virtual address of the first NIC register location to write in suitable 
user mode registers. (One address is sufficient since the seven writes are performed
to succeeding addresses.) For each of the seven NIC register writes, the hypercall 
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Figure 24: How the hypervisor can use an SMMU. The hypervisor configures the 
system such that the SMMU can only be configured in privileged mode, and 
therefore the hypervisor is the only software component that can configure the 
SMMU. The hypervisor then configures the SMMU such that the SMMU prevents 
the NIC from accessing blocks that are not allocated to Linux, or that are allocated
to Linux but contain page tables or are mapped as executable. That is, the NIC can
only access non-executable D blocks: blocks bl for which τ(bl) = D and ρex(bl) = 0 
(indicated by the two bidirectional arrows between the SMMU and the two non-
executable D blocks in RAM). When a memory access is performed by the NIC, the
access is checked by the SMMU. If the access is to a block of type D and for which 
ρex is equal to zero, the SMMU allows the access and otherwise not. Such a 
configuration gives Linux direct access to all NIC registers while still ensuring 
that the NIC cannot transfer the control of the system to Linux or enabling the 
CPU to execute unsigned Linux code. The SMMU can therefore be used to 
eliminate the need for the NIC register write request handlers and their associated 
execution overhead.
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in the hypervisor invokes the corresponding NIC register write request handler. 
This implementation reduces only the overhead described in the first and last item 
bullets. The performance improvement is therefore limited by the overhead 
described in the second bullet item and which cause the majority of the overhead 
of NIC register writes.

Since the VE functionality cannot be used to restrict which memory accesses the 
NIC performs, writes to the NIC registers affecting memory accesses must still be 
checked. Hence, the NIC register write request handlers and their associated 
execution overhead cannot be removed despite the usage of VE. In addition to VE, 
ARM also specifies a hardware device called system memory management unit 
(SMMU) [37]. The SMMU has a similar relationship to I/O devices as the MMU 
has to CPUs. The MMU maps virtual addresses accessed by the CPU to physical 
addresses and prevents accesses that are not permitted, as specified by the page 
tables located in memory. The SMMU performs equivalent operations according to
its own set of page tables, but for memory accesses issued by I/O devices.

The hypervisor can configure a system with an SMMU such that the NIC can only 
access non-executable D blocks as follows:

• The hypervisor configures the system such that the configuration registers 
of the SMMU and the page tables used by the SMMU are accessible only 
to the CPU and when the CPU executes the hypervisor.

• The memory mapping request handlers configure the page tables used by 
the SMMU such that the NIC can only access non-executable D blocks.

Such a configuration prevents the NIC from transferring the control of the system 
to Linux and the CPU from executing unsigned Linux code. Hence, the need for 
the NIC register write request handlers and their associated execution overhead are
eliminated. Figure 24 illustrates this usage of an SMMU.
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5 Models
The purpose of the proof plan is to describe how it can be formally proved at the 
ISA level that only signed Linux code is executed in a physical system consisting 
of an ARMv7 CPU, a memory, the NIC on BeagleBone Black, the hypervisor, the 
monitor and Linux. To accomplish such a proof, a formal model must be 
constructed that describes how the hardware in this physical system executes. The 
operations performed by the physical CPU must be described by the model at the 
ISA level, meaning that the model describes each atomic execution step of the 
physical CPU as the execution of one CPU instruction. The operations performed 
by the physical NIC are preferably described by the model at a granularity that 
does not include more operations than one atomic execution step of the physical 
NIC. Since the property of only signed Linux code being executed depends on 
memory content, it is critical that the model describes all memory accesses that the 
physical NIC can perform. Only then can the formal proof imply that only signed 
Linux code is executed by the physical system. That is, if it is proved on the model 
that only signed Linux code is executed, then indeed only signed Linux code is 
executed by the hardware.

Section 5.1 describes a model of the physical NIC that has been designed to take 
these considerations into account and discusses its correctness.

This NIC model is then used to instantiate the device model framework (described 
in Subsection 2.4.1) to form a model that describes how hardware consisting of an 
ARMv7 CPU, a memory, and the NIC on BeagleBone Black executes at the ISA 
level. The resulting model is called the real model. Section 5.2 describes the real 
model and discusses its correctness. The proof plan in Chapter 6 describes by 
means of this model how a formal proof can be constructed of that only signed 
Linux code is executed.

That proof plan consists of three steps. In the first step it is proved that the software
design of the hypervisor and the monitor ensures that only signed Linux code is 
executed. That first proof step is based on an abstract model describing the 
software design of the hypervisor and the monitor, called the ideal model. In the 
second step the simulation proof method is applied by proving on the real model 
that the execution of the binary code of the hypervisor and the monitor operates 
according to their software design described by the ideal model. In the third step 
the property of that only signed Linux code is executed is transferred from the 
ideal model to the real model. The conclusion is therefore that the hypervisor and 
the monitor ensure that only signed Linux code is executed by hardware that 
contains one ARMv7 CPU, a memory, and the NIC on BeagleBone Black. The 
ideal model is described in Section 5.3.

5.1 Model of the Network Interface Controller
The intent of the NIC model is to guide an implementation in HOL4 of a model of 
the physical NIC that describes all memory accesses the physical NIC can perform 
with respect to how the NIC device driver in Linux 3.10 configures the physical 
NIC. All operations of the physical NIC described in Section 2.3.2 are included in 
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the NIC model. The NIC model is specified in the pseudocode syntax described in 
Appendix A, and a significant part of that specification is included in Appendix C.

The NIC model is designed to fit the I/O device interface of the device model 
framework. By basing the proof plan on these two models, the verification results 
described in this thesis are made as usable as possible for PROSPER, since 
PROSPER has developed the device model framework and related verification 
tools.

5.1.1 Semantics of the Model of the Network Interface 
Controller

To fit the I/O device interface of the device model framework, the NIC model 
instantiates the four functions of this interface, d_read, d_write, progress, and 
receive, with the NIC model functions read_nic_register, write_nic_register, 
nic_execute and memory_byte, respectively. These four NIC model functions 
describe the operation of the physical NIC according to the semantics of d_read, 
d_write, progress and receive, described in Subsection 2.4.1, and the NIC 
specification [32].

The four NIC model functions operate on a state of the NIC model. (The data type 
of a NIC model state is denoted by nic_state and is partly defined in Subsection 
C.3). The state of the NIC model contains the values of all variables used by these 
functions to fulfill their purpose, including the contents of the NIC registers 
included in the NIC model. The registers of the physical NIC that are included in 
the NIC model are the ten NIC registers affecting which memory accesses the 
physical NIC performs. Eight of these registers are shown in Figure 9 in 
Subsection 2.3.2. The other two NIC registers are DMACONTROL and 
RX_BUFFER_OFFSET. All ten of these NIC registers are described in Section 
C.1.

Since it is only necessary for the NIC model to describe the memory accesses the 
physical NIC performs considering how the NIC device driver in Linux 3.10 
configures the physical NIC, nearly all other operations performed by the physical 
NIC are not described by the NIC model. In addition, for natural reasons, physical 
NIC operations unspecified (not described) by the NIC specification are also not 
described by the NIC model. To make the NIC model sound, when the NIC model 
shall describe a physical NIC operation that is either not included in the NIC model
or that is unspecified by the NIC specification, the four NIC model functions return
a NIC model state that is marked as dead. A dead state is an undefined state that 
cannot be left.

The NIC model is a transition system with four types of transitions: register read, 
register write, autonomous, and memory read request reply transitions, described 
by read_nic_register, write_nic_register, nic_execute and memory_byte, 
respectively. The following list summarizes how these four functions describe the 
operation of the physical NIC:

• (nic_state, word32) read_nic_register(nic_state nic, word32 pa)

Describes a register read transition of the NIC model. Given a state of the 
NIC model, nic, and a physical address of the NIC register to read, pa, this 
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function returns an updated state of the NIC model and the 32-bit value of 
the read NIC register in the state nic.

If pa is not 32-bit word aligned, then the returned state is marked as dead. 
The reason for marking the returned NIC state as dead is because the 
ARMv7 specification does not allow unaligned accesses to I/O device 
registers [33, p. 109].

If pa is 32-bit word aligned, then the returned state is the same as the input 
state nic, since reads of the ten NIC registers included in the NIC model do 
not cause the physical NIC to perform any operation. If one of the NIC 
registers included in the NIC model is accessed, the value of that register as
recorded by nic is returned. If a NIC register not included in the NIC model
is accessed, a non-deterministically chosen value is returned, since the 
value of the accessed register is unknown.

• nic_state write_nic_register(nic_state nic, word32 pa, word32 value)

Describes a register write transition of the NIC model. Returns the NIC 
model state that the NIC model enters from the state nic when the value 
value is written to the NIC register located at physical address pa. If pa is 
not 32-bit word aligned or such a write causes the physical NIC to perform 
an unspecified operation, the returned state is marked as dead. Otherwise, 
the state of the NIC model is updated to reflect the reaction of the physical 
NIC when such a write is performed.

• (nic_state, mem_req  { }, bool) ∪ ⊥ nic_execute(nic_state nic)

Describes an autonomous transition of the NIC model. The purpose of 
nic_execute is to describe one execution step of the physical NIC. To allow 
detailed reasoning of the behavior of the physical NIC, nic_execute 
considers an execution step of the physical NIC to be one fine-grained 
hardware operation. Each such operation is either one access to one byte in 
memory or in CPPI_RAM, or one access to one field of a NIC register or a 
buffer descriptor in CPPI_RAM.

The first component of the returned tuple is some state (non-deterministic 
function as explained later in Subsection 5.1.1.1) that the NIC model enters 
when it performs one autonomous transition from the state nic. If the NIC 
model does not describe the operation to be performed, the returned state is 
marked as dead.

The second component contains information related to memory requests 
issued by the NIC model. If the returned value is equal to , the NIC ⊥
model made no memory request. Otherwise, the data type mem_req 
contains information of whether it is a read or write request, the physical 
address of which memory byte to access, and if it is a write, which value to 
write. nic_execute never issues a memory read request if an earlier one has 
not been replied. 

The third component is true if and only if the NIC model in the returned 
state is asserting an interrupt, according to the value of an interrupt flag in 
that returned state. The interrupt flag in a state is non-deterministically set 
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to true by nic_execute when nic_execute writes a CP register. The reason 
for this non-deterministic behavior is because the interrupt related NIC 
registers are not included in the NIC model and it is therefore unknown 
whether interrupts are enabled or not. By setting the interrupt flag to true 
non-deterministically, the NIC model describes the operation of the 
physical NIC with respect to both enabled interrupts and disabled 
interrupts.

• nic_state memory_byte(nic_state nic, mem_req reply)

Describes memory read request reply transitions. If the NIC model in the 
state nic does not expect the memory read request reply reply, the returned 
state is marked as dead. memory_byte considers a reply as expected if the 
following two conditions are satisfied. The first condition is that the value 
of the flag memory_request in the state nic is true. It is set to true if and 
only if a memory read request has been issued and not replied. The second 
condition is that the physical address of the last issued memory read request
by the NIC model (that address is stored in nic), is equal to the physical 
address specified by reply. If the reply is expected as determined by these 
two conditions, then the returned state is equal to the state nic but with the 
flag memory_request set to false, reflecting that the last issued memory 
read request has been replied. Since the operation of the physical NIC does 
not depend on memory content, the read byte value specified by reply is 
ignored.

5.1.2 Autonomous Transitions of the NIC Model

This subsection describes the implementation of nic_execute in deeper detail, 
which constitutes the largest part of the NIC model. The other parts of the NIC 
model, read_nic_register, write_nic_register and memory_byte, are specified in 
pseudocode with comments in Sections C.4, C.5 and C.8, respectively.

By considering which operations the physical NIC performs as a result of how 
software configures it, as described in Subsections 2.3.2.1 through 2.3.2.5, the 
physical NIC can be viewed as performing five tasks: initialization of itself, 
transmission of frames, reception of frames, tear down of transmission of frames, 
and tear down of reception of frames. The execution steps of the physical NIC are 
therefore naturally described by nic_execute by means of five automata. Each 
automaton describes how the physical NIC performs one of these five tasks. Each 
autonomous transition of the NIC model described by nic_execute is one transition 
of one of these five automata. Which automaton that shall perform the next 
autonomous transition of the NIC model is non-deterministically decided by 
nic_execute. Figure 25 illustrates this idea.

Each of the five tasks the physical NIC performs is either idle, active or pending. A
task is idle when the NIC does not perform it, active when the NIC performs it, and
pending if the NIC will perform it but must complete another task before 
performing it. Each automaton is therefore either idle, active or pending. When the 
NIC is powered on, all task are idle. All automata are therefore initially idle. 
nic_execute cannot select an automaton that is idle or pending to perform the next 
transition of the NIC model, since such an automaton cannot perform a transition. 
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(If no automata is active when nic_execute is applied by the device model 
framework function advance_single, nic_execute returns the argument state.) 
When the CPU writes a NIC register, that write might cause the NIC to initiate a 
task. The initiated task becomes active if the NIC can perform it, and pending if the
NIC must complete another task before performing it. The automaton describing 
the initiated task therefore becomes active or pending, respectively. When the NIC 
completes a task, that task becomes idle. The automaton describing the completed 
task therefore becomes idle. If the NIC can perform a pending task as a result of 
completing another task, the pending task becomes active. The pending automaton 
describing the pending task therefore becomes active. Hence, some automata 
depend on other automata.

The following list summarizes which operations of the physical NIC each 
automaton describes, when each automaton becomes active and idle, and which 
relationship each automaton has with the other automata with respect to being idle,
active or pending:

• The initialization automaton: Describes the initialization operations of the 
physical NIC. This automaton becomes active or pending when the CPU 
model of the device model framework sets bit zero of the 
CPDMA_SOFT_RESET register. This automaton becomes idle after it has 
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Figure 25: The autonomous transitions of the NIC model are performed by five 
automata. The five automata describe the operations that are related to 
initialization (Init), transmission (TX), reception (RX), transmission teardown 
(TX_TD) and reception teardown (RX_TD). Which automaton that shall perform 
the next autonomous transition of the NIC model is decided non-deterministically 
by nic_execute. That is, the automaton that shall perform the next autonomous 
transition of the NIC model is selected arbitrarily. A simplified transition system of
the NIC model is shown below each label of each automaton. A transition between 
a pair of highlighted states denotes the next autonomous transition the NIC model 
performs if the corresponding automaton is selected by nic_execute. Note that the 
current state of the NIC model is not the same in all five shown transition systems. 
The current state of the NIC model is the same only in the two transition systems 
shown below TX and RX. The next transitions of the transmission and reception 
automata are therefore starting from the same state.

Init TX RX TX_TD RX_TD



cleared that bit and thereafter the CPU model has initialized the HDP and 
CP registers to zero.

This automaton is only active (and can perform transitions) when all other 
automata are idle. There are three reasons:

◦ Initiation of the transmission, reception or teardown tasks while the 
physical NIC performs the initialization task is described by the NIC 
model as entering a dead state, since it is unspecified how the physical 
NIC operates in these cases.

◦ Initiation of the initialization task while the physical NIC performs a 
teardown task is described by the NIC model as entering a dead state, 
since it is unspecified how the physical NIC operates in this case.

◦ The initialization task is pending until the physical NIC has completed 
the transmission of the frame currently being transmitted, and similarly 
for reception. Hence, the initialization automaton cannot become active 
until the transmission and reception automata have transmitted and 
received their currently processed frames and become idle.

Hence, if the initialization automaton is active, no other automaton can 
become active. If any other automaton is active, the initialization 
automaton can only become pending if the NIC model does not enter a 
dead state.

• The transmission automaton: Describes the processing of the queue of 
buffer descriptors in transmission DMA channel zero. (Since Linux only 
uses transmission DMA channel zero for transmission, the NIC model only 
describes transmission DMA channel zero, and not all eight transmission 
DMA channels.) This automaton becomes active when the CPU model 
writes the TX0_HDP register with the physical address of the first buffer 
descriptor in the queue to process. This automaton becomes idle either after
all buffer descriptors in the queue have been processed, or after the 
transmission of the current frame is complete and the initialization or 
transmission teardown automaton is pending.

The transmission automaton is only active (and can perform transitions) 
when the initialization and transmission teardown automata are idle or 
pending. There are two reasons:

◦ The initialization and teardown tasks are pending until the physical NIC
has completed the transmission of the frame currently being 
transmitted. Hence, the initialization and transmission teardown 
automata cannot become active until the transmission automaton has 
transmitted the current frame and become idle.

◦ Initiation of the transmission task while the physical NIC performs the 
initialization or transmission teardown task is described by the NIC 
model as entering a dead state, since the behavior of the physical NIC 
in that case is unspecified.
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Hence, if the transmission automaton is active, the initialization and 
transmission teardown automata cannot become active. If the initialization 
or the transmission teardown automaton is active and the transmission 
automaton is to become active, the NIC model enters a dead state.

• The reception automaton: Describes the processing of the queue of buffer 
descriptors in reception DMA channel zero. These buffer descriptors are 
used to store the most recently received frame. (As for transmission, since 
Linux only uses reception DMA channel zero for reception, the NIC model 
only describes reception DMA channel zero and not all eight reception 
DMA channels.)

The reception automaton becomes active when nic_execute has non-
deterministically decided that a new frame has been received. That occurs 
when the following five conditions hold:

◦ The reception automaton is idle, meaning the physical NIC is free to 
process a new received frame.

◦ There are unused buffer descriptors in reception DMA channel zero, 
meaning there is memory allocated for the physical NIC to store 
received frames.

◦ The initialization automaton is idle and the current NIC model state 
reflects a physical NIC that has been initialized, meaning the physical 
NIC is not currently being initialized but has been initialized.

◦ The reception teardown automaton is idle, meaning reception DMA 
channel zero of the physical NIC is not being teared down.

◦ nic_execute selects the reception automaton to perform a transition, 
meaning nic_execute decided that a frame has been received.

The first four conditions describe a state of the physical NIC in which the 
physical NIC can process a received frame, and the last condition describes 
the case where the physical NIC has received a frame which the physical 
NIC will process. This means that the reception task of the physical NIC 
becomes active, and therefore the reception automaton also becomes active.

The reception automaton becomes idle when the received frame has been 
stored in memory and all of its associated buffer descriptors have been 
processed. For similar reasons as for the transmission automaton, this 
automaton is only active (and can perform transitions) when the 
initialization and reception teardown automata are idle or pending.

• The transmission teardown automaton: Describes the operations that the 
physical NIC performs to tear down transmission DMA channel zero. This 
automaton becomes active when the CPU model writes zero to the 
TX_TEARDOWN register. (Since the NIC model only describes 
transmission DMA channel zero, only zero can be written to this register 
and writes of any other value causes the NIC model to enter a dead state.) 
This automaton becomes idle after it has written some buffer descriptor 
fields in the first unused buffer descriptor in reception DMA channel zero, 
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cleared the TX0_HDP register, and written the TX0_CP register with 
0xFFFFFFFC to generate a transmission teardown interrupt.

This automaton is only active (and can perform transitions) when the 
initialization and transmission automata are idle. There are three reasons:

◦ Initiation of the initialization task while the physical NIC performs the 
transmission teardown task, and vice versa, is described by the NIC 
model as entering a dead state, since the behavior of the physical NIC 
in those cases is unspecified.

◦ Initiation of the transmission task while the physical NIC performs the 
transmission teardown task is described by the NIC model as entering a 
dead state, since the behavior of the physical NIC in this case is 
unspecified.

◦ The transmission teardown task is pending until the physical NIC has 
completed the transmission of the frame currently being transmitted. 
Hence, the transmission teardown automaton cannot become active 
until the transmission automaton has transmitted its currently processed 
frame and become idle.

Hence, if the NIC model does not enter a dead state when describing each 
of these scenarios, it is because the transmission teardown automaton 
becomes pending or active when the transmission automaton is active or 
idle, respectively.

• The reception teardown automaton: Similar to the transmission teardown 
automaton but with respect to reception.

5.1.2.1 Non-Deterministic Selection of NIC Automaton 
Transitions

In the initial state of the NIC model, all automata are idle, reflecting a physical 
NIC that has just been powered on. The automata become active or pending when 
the CPU model writes certain NIC registers under certain conditions. When the 
scheduler of the device model framework determines that the NIC model shall 
perform an autonomous transition, advance_single of the device model framework 
applies nic_execute. If several automata are active, nic_execute must decide which 
active automaton shall perform that next autonomous transition of the NIC model. 
nic_execute makes that decision non-deterministically. Hence, the NIC model has 
its own non-deterministic scheduler, which schedules automata. The execution of 
the physical NIC is therefore described by the NIC model as the set of all possible 
interleavings of the transitions performed by the five automata. Figure 26 shows an
execution trace of the NIC consisting of a sequence of autonomous NIC 
transitions.

nic_execute selects the automaton that shall perform the next autonomous 
transition of the NIC model as follows. First, nic_execute forms a set A containing 
identifiers of all active automata, except for the initialization automaton if it has 
performed the reset operation (as explained in Subsection 5.1.2.2). If the reception 
automaton is idle, and the current NIC model state satisfies the middle three 
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conditions listed in Subsection 5.1.2 in the bullet item for the reception automaton, 
the identifier of the reception automaton is also added to A. Then, nic_execute non-
deterministically selects an identifier in A. The selected identifier identifies which 
automaton that shall perform the next autonomous transition of the NIC model. If 
A is empty, nic_execute returns the argument state, meaning the autonomous NIC 
transition did nothing.

When nic_execute has selected an automaton to perform the next autonomous 
transition of the NIC model, nic_execute applies the transition function of that 
automaton. That automaton has a set of step functions, and the transition function 
applies one of those step functions. To determine which step function to apply, 
each automaton has a nonnegative step variable, whose value is stored in the state 
of the NIC model. The value of the step variable identifies which step function the 
transition function shall apply. The application of the identified step function 
makes the selected automaton perform its next transition. That transition is also the
next autonomous transition of the NIC model.

Furthermore, if a step variable of an automaton is equal to zero, the automaton is 
idle, if the step variable is equal to one, the automaton is active or pending, and if 
the step variable is greater than one, the automaton is active. An automaton is 
pending if and only if it must wait for another automaton to become idle. For 
instance, assume the step variable of the reception teardown automaton is one. If 
the step variable of the reception automaton is zero, the reception teardown 
automaton is active, since this means that the reception task of the physical NIC is 
idle and therefore the physical NIC can perform the reception teardown task. If the 
step variable of the reception automaton is nonzero, the reception teardown 
automaton is pending, since this means that the physical NIC performs the 
reception task and therefore the physical NIC must wait with performing the 
reception teardown task. Figure 27 and the following three subsections (5.1.2.2 
through 5.1.2.4) illustrate the use of step variables and step functions, and how 
automata transition between being idle, active and pending.
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Figure 26: An execution trace consisting of autonomous NIC transitions. TX is an 
abbreviation for the transmission automaton, RX for the reception automaton, and 
TX_TD for the transmission teardown automaton. It is assumed that the 
transmission and reception automata are active and the transmission teardown 
automaton is pending in state s0. In this example, nic_execute has decided that first
shall the transmission automaton make a transition and then the reception 
automaton. Thereafter, the transmission automaton performs its last transition and
becomes idle in state s3. The transmission teardown automaton therefore becomes 
active, enabling it to be selected by nic_execute to perform its first transition the 
next time nic_execute is applied by the device model framework function 
advance_single. For the last two transitions, nic_execute first selects the 
transmission teardown automaton and then the reception automaton, leaving the 
NIC model in state s5.
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Figure 27: An example of how the step functions and step variables of each 
automaton are used to perform automaton and autonomous NIC transitions. The 
step function applications on the left side perform the transitions next to them and 
modify the step variables of the states as indicated by the variable values on the 
right side of the states. In state s0, nic_execute selects the transmission automaton 
to perform the next autonomous transition of the NIC model. Since the step 
variable of the transmission automaton, transmit_step, is equal to seven, the 
transition function of the transmission automaton applies step function seven of the
transmission automaton, transmit_step7, which sets transmit_step to eight. Next 
time nic_execute selects the transmission automaton, the transition function of the 
transmission automaton will apply step function eight of the transmission 
automaton, transmit_step8. In this example, nic_execute selects the reception 
automaton before nic_execute selects the transmission automaton again. The 
transmission automaton is active in states s0, s1 and s2, since its step variable is 
nonzero in those states and the transmission automaton never waits for other 
automata to become idle. The transmission teardown automaton is pending in 
states s0, s1 and s2, since its step variable is equal to one and it must wait for the 
transmission automaton to become idle. After transmit_step8 has been applied and
set transmit_step to zero, the transmission automaton is idle, since its step variable
is set to zero. The transmission teardown automaton therefore becomes active. This
enables nic_execute to select the transmission teardown automaton to perform the 
next autonomous NIC transitions, which nic_execute does when given state s3. The 
transition function of the transmission teardown automaton then applies 
transmit_teardown_step1, since the step variable transmit_teardown_step is equal 
to one. The usage of step functions and step variables is identical for all automata.
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Apart from having a step variable, each automaton might also have additional 
variables that are accessed by its step functions. The values of those variables are 
recorded in the state of the NIC model.

The following three subsections describe the initialization, transmission and 
transmission teardown automata in deeper detail. Since the operations related to 
reception are similar to those of transmission, and the latter operations are fewer, 
the descriptions of the reception and reception teardown automata are omitted. The
differences are that the transmission automaton reads bytes in memory while the 
reception automaton writes them, and the usage of certain buffer descriptor fields.

5.1.2.2 Initialization Automaton

Figure 28 shows the initialization automaton, which operates as follows, assuming 
it is initially idle. If the CPU model sets bit zero of the CPDMA_SOFT_RESET 
register, and a step variable of some teardown automaton is nonzero, meaning 
some teardown automaton is active, write_nic_register sets the NIC model in a 
dead state (since it is unspecified which operations the physical NIC performs 
when a reset operation of the DMA hardware is initiated while a DMA channel is 
being teared down). If both step variables of the teardown automata are zero, 
meaning they are idle, write_nic_register sets the step variable of the initialization 
automaton to one. If both step variables of the transmission and reception automata
are zero, meaning they are idle, the initialization automaton becomes active. 
Otherwise, the initialization automaton becomes pending. When the step functions 
of the transmission and reception automata have set the step variables of those two 
automata to zero, meaning they have become idle, the initialization automaton has 
become active. When the initialization automaton is active, it can be selected by 
nic_execute to perform its next transition.

Next time nic_execute determines that the initialization automaton shall perform a 
transition, nic_execute applies the transition function of the initialization 
automaton. That transition function clears bit zero of the CPDMA_SOFT_RESET 
register and sets the step variable of the initialization automaton to two. (Since the 
initialization automaton only performs these two operations, and in one single 
transition, its only step function is instead implemented by its transition function.) 
The execution of these two operations means that the physical NIC has performed 
the reset operation of the DMA hardware, and that the physical NIC now waits for 
the physical CPU to initialize the HDP and CP registers. Even though the 
initialization automaton is active, since its step variable is nonzero, nic_execute 
will not select it to perform additional transitions. The reason is that the automaton 
has performed its operations, and it is the task of the software to initialize the HDP 
and CP registers.

When the CPU model has initialized the TX0_HDP, RX0_HDP, TX0_CP and 
RX0_HDP registers to zero, the NIC model reflects a physical NIC that has been 
initialized. (The NIC model only requires the HDP and CP registers of DMA 
channels zero to be initialized since Linux only uses them.) write_nic_register 
therefore sets the step variable of the initialization automaton to zero at that point, 
meaning the initialization automaton becomes idle.
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5.1.2.3 Transmission Automaton

Figure 29 shows the transmission automaton, which operates as follows, assuming 
it is initially idle. When the NIC model is in a state where the initialization 
automaton either has not performed all of its initialization operations or is not idle, 
the NIC model reflects a physical NIC which has not been initialized or which is 
currently being initialized. When the physical NIC has not been initialized or is 
being initialized, it is unspecified how the physical NIC operates when the physical
CPU writes the TX0_HDP register to start transmission. write_nic_register 
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Figure 28: The initialization automaton. Each circle represents an automaton state
of the initialization automaton. An automaton state represents all states in the NIC 
model that have a specific value of the step variable of the corresponding 
automaton. The initialization automaton has three automaton states, s0, s1 and s2, 
since its step variable has three possible values, zero, one and two. Automaton 
states s0, s1 and s2 represents the states in the NIC model in which the value of the 
step variable of the initialization automaton is equal to zero, one and two, 
respectively. In the NIC model states represented by s0, the initialization automaton
is idle. In the NIC model states represented by s1, the initialization automaton is 
active or pending. If the step variables of the transmission and reception automata 
are zero in a NIC model state represented by s1, meaning they are idle in that NIC 
model state, then the initialization automaton is active in that NIC model state. 
Otherwise, the initialization automaton is pending in that NIC model state. In the 
NIC model states represented by s2, the initialization automaton is active. The 
transitions show how the step variable of the initialization automaton is modified. 
The transition represented by the continuous arrow is described by the transition 
function of the initialization automaton (which implements its only step function), 
meaning that the initialization automaton itself modifies its step variable in that 
transition. The transitions represented by dashed arrows are described by 
write_nic_register, meaning that the initialization automaton itself does not modify
its step variable in those transitions. That is, these latter modifications of the step 
variable are not caused by the initialization automaton performing an autonomous
NIC transition, but instead caused by the CPU model performing a transition. The 
transition from s0 to s1 occurs when the CPU model sets bit zero of the 
CPDMA_SOFT_RESET register, and is described by write_nic_register. The 
transition from s1 to s2 occurs when the initialization automaton performs the reset 
operation of the DMA hardware. That reset operation is described by the 
transition function of the initialization automaton, which clears bit zero of the 
CPDMA_SOFT_RESET register. The transition from s2 to s0 is not a single 
transition of the NIC model. It represents four transitions of the NIC model, each 
of which occurs when the CPU model writes zero to the TX0_HDP, RX0_HDP, 
TX0_CP or RX0_CP register, respectively. The transition from s2 to s0 occurs when
the CPU model has written zero to all these four registers, and is described by 
write_nic_register.
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Figure 29: The transmission automaton. The continuous circles labeled s0 through 
s3 and s6 through s8 represent automaton states of the transmission automaton (see 
the caption of Figure 28 for an explanation of automaton states). The dashed 
circles labeled s4 and s4,m together represent the automaton state where the step 
variable of the transmission automaton is equal to four, and similarly for s5 and 
s5,m but with the step variable equal to five. The transitions represented by 
continuous arrows are described by the step functions of the transmission 
automaton, while the transitions represented by dashed arrows are described by 
write_nic_register or memory_byte. A cyclic sequence of transitions starting from 
and ending at s0 processes all buffer descriptors in transmission DMA channel 
zero. The transition from s0 to s1 activates the transmission automaton and occurs 
when the CPU model writes the TX0_HDP register. The transition from s1 to s2 
checks that the next buffer descriptor to process is located in CPPI_RAM at a 32-
bit word aligned physical address. Each transition from s2 reads one byte of the 
next buffer descriptor to process from CPPI_RAM. The transitions from s3 and s4 
to s4,m and s5,m issue memory read requests, and set the NIC model variable 
memory_request to true (thereby the letter m in the index of s4,m and s5,m). In s4,m, 
there are additional memory read requests to issue for the bytes of the data buffer 
addressed by the current buffer descriptor, while in s5,m, all memory read requests 
have been issued. When the device model framework applies the NIC model 
function memory_byte to reply to a memory read request (see Subsection 2.4.1), 
memory_byte sets memory_request to false and the transmission automaton 
transitions from s4,m to s4 or from s5,m to s5. If the current frame under transmission 
is located in several data buffers addressed by several buffer descriptors (as 
shown in Figure 10 in Subsection 2.3.2.2), and all of those buffer descriptors have 
not been processed, the next buffer descriptor in the queue shall be processed. In 
such a case, the transmission automaton transitions from s5 to s2 (that transition 
also includes the operations of the transition from s1 to s2). This means that a 
sequence of transitions starting from s1 and ending at s5 processes a single buffer 
descriptor. When all buffer descriptors of the current frame under transmission has
been processed, the transmission automaton writes some NIC registers and fields 
of the buffer descriptors addressing the data buffers of that frame. These writes are
performed by the transitions from s5, s7 and s8. If there are no additional frames to 
transmit, the transmission automaton transitions from s8 to s0 and becomes idle. 
Otherwise, it transitions from s8 to s1 to process the first buffer descriptor of the 
next frame to transmit. There is no transition to s6 (and thereby no transition from 
s6) since step function five either applies step function one or six, which cause the 
step variable to be set to two, or to seven or eight, respectively.
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therefore sets the NIC model in a dead state if the CPU model writes TX0_HDP 
when the NIC model is in a state where the initialization automaton either has not 
initialized the NIC or is not idle.

If the CPU model writes TX0_HDP when the initialization automaton has 
performed all of its initialization operations and is idle, write_nic_register sets the 
step variable of the transmission automaton to one. The transmission automaton 
therefore becomes active. Since the transmission automaton never waits for any 
other automaton to become idle before the transmission automaton can perform its 
transitions, the transmission automaton is never pending. The value written to 
TX0_HDP is the physical address of the first buffer descriptor in the queue that is 
given to transmission DMA channel zero. The processing of that channel is 
described by the transmission automaton by means of its eight step functions. 
Those eight step functions describe the operation of the transmission automaton as 
follows:

1. Checks that the address of the currently processed buffer descriptor is 32-
bit word aligned and that all of its sixteen bytes are located in CPPI_RAM. 
(In the following seven step function descriptions, this current buffer 
descriptor will only be referred to as the buffer descriptor.) This buffer 
descriptor is the head of the buffer descriptor queue in transmission DMA 
channel zero when the transmission automaton becomes active. If the check
fails, the current NIC model state is marked as dead. Otherwise, step 
function two is applied, since this first step function performs no hardware 
operation (that is, not accessing the memory or a NIC register; for an 
explanation of hardware operations, see the description of the function 
nic_execute in Subsection 5.1.1).

2. Reads the next byte of the buffer descriptor from CPPI_RAM. When all 16 
bytes of it have been read, the step variable is set to three. The next time the
transmission automaton is selected by nic_execute, the transition function 
of the transmission automaton applies step function three of the 
transmission automaton.

3. Checks that certain fields of the buffer descriptor are correctly initialized. If
the check fails, the state is marked as dead. Otherwise, step function four is 
applied.

4. Issues the next memory read request for the next byte to read of the data 
buffer addressed by the buffer descriptor. To keep the NIC model simple, 
the transmission automaton reads the bytes of the data buffer sequentially 
and the transmission automaton does not issue an additional memory read 
request until the pending one has been replied. To prevent nic_execute from
selecting the transmission automaton to perform its next transition, and 
thereby potentially issue an additional memory read request, while a 
memory read request is pending, the transmission automaton has a NIC 
model variable memory_request that is either true or false.

When this step function issues a memory read request, it sets 
memory_request to true. When memory_request is true, nic_execute does 
not select the transmission automaton to perform its next transition. When 
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the device model framework gives the content of the byte at the physical 
address specified by the issued memory read request, the device model 
framework function advance_single applies the device model framework 
function mem_acc_by_dev, which in turn applies the NIC model function 
memory_byte (see Subsection 2.4.1 where memory_byte instantiates 
receive). memory_byte sets memory_request to false, since the issued 
memory read request has been replied. When memory_request is false, 
nic_execute can select the transmission automaton again to perform its next
transition. If there are additional memory read requests to issue, the step 
variable of the transmission automaton is equal to four. The transition 
function of the transmission automaton therefore applies this fourth step 
function, which then issues the next memory read request.

When this step function issues the final memory read request to read the 
last byte of the data buffer addressed by the buffer descriptor, it sets 
memory_request to true and the step variable to five. This causes the device
model framework to reply to this final memory read request, by applying 
memory_byte, which sets memory_request to false. Since memory_request 
is false, the next time the device model framework applies nic_execute, 
nic_execute can select the transmission automaton. If the transmission 
automaton is selected, its transition function applies step function five.

5. Now when all bytes of the data buffer addressed by the buffer descriptor 
has been read from memory, it is checked whether the complete frame has 
been read. If that is the case, step function six is applied. Otherwise, step 
function one is applied to process the next buffer descriptor in the queue. 
That next buffer descriptor addresses the data buffer containing the next 
part of the frame. Since this fifth step function does not describe a hardware
operation, it ends by applying either step function one or six.

6. If the buffer descriptor is the last one in the queue, its end of queue bit is set
(see Subsection 2.3.2.2 for a description of buffer descriptor fields), and the
step variable is set to seven. Otherwise, no hardware operation is described 
by this sixth step function, and therefore it applies step function seven.

7. The ownership bit is cleared in the buffer descriptor addressing the first part
of the read frame. If the current buffer descriptor, which addresses the last 
part of the read frame, is last in transmission DMA channel zero, 
TX0_HDP is set to zero. Finally, the step variable is set to eight.

8. The physical address of the current buffer descriptor is written to TX0_CP. 
Such a write generates a transmission completion interrupt, if such 
interrupts are enabled. Such an interrupt signals that the read frame has 
been transmitted. The state of the NIC model includes a boolean variable 
that is true if and only if the NIC model in its current state describes a 
physical NIC that is currently asserting a transmission completion interrupt.
This variable is set to true non-deterministically. That is, sometimes it is set
to true and sometimes it is not set at all. The reason for setting it non-
deterministically is because (i) the interrupt control registers of the physical
NIC are not described by the NIC model, and (ii) setting it non-
deterministically allows the NIC model to describe the operation of the 
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physical NIC for both cases where transmission completion interrupts are 
enabled and disabled. Section C.10 describes the interrupt control registers 
of the physical NIC that must be described by the NIC model in order for 
the NIC model to describe physical NIC interrupts deterministically.

If all buffer descriptors in transmission DMA channel zero have now been 
processed or the transmission teardown or initialization automata are 
pending (some of their step variables is equal to one), the step variable of 
the transmission automaton is set to zero to indicate that the transmission 
automaton is idle. Otherwise the step variable is set to one to indicate that 
the next time the transmission automaton is selected by nic_execute to 
perform the next transition of the NIC model, the transmission automaton 
shall begin to process the next buffer descriptor in transmission DMA 
channel zero. That buffer descriptor addresses the first part of the next 
frame to transmit.

5.1.2.4 Transmission Teardown Automaton

Figure 30 shows the transmission teardown automaton, which operates as follows, 
assuming it is initially idle. If the CPU model writes TX_TEARDOWN to a 
nonzero value, or if the CPU model writes TX_TEARDOWN when the 
initialization automaton either has not initialized the NIC or is not idle, the NIC 
model enters a dead state (since in this scenario the operations performed by the 
physical NIC are unspecified). Otherwise, when the CPU model writes 
TX_TEARDOWN to zero and the initialization automaton both has initialized the 
NIC and is idle, write_nic_register sets the step variable of the transmission 
teardown automaton to one. If the transmission automaton is idle, the transmission 
teardown automaton becomes active. Otherwise the transmission teardown 
automaton becomes pending. The transmission teardown automaton remains 
pending until the transmission automaton becomes idle, which occurs when step 
function eight of the transmission automaton sets the step variable of the 
transmission automaton to zero. At that point the transmission teardown automaton
becomes active, and therefore also selectable by nic_execute to perform its 
transitions.

The operations of those transitions are described by the four step functions of the 
transmission teardown automaton as follows:

1. Sets the step variable to two. If transmission DMA channel zero contains 
buffer descriptors, meaning the transmission automaton has not processed 
all buffer descriptors in that channel, the end of queue bit of the first buffer 
descriptor in that channel is set non-deterministically (either it is written to 
one or not written at all). This bit is set non-deterministically since the 
specification does not explicitly specify this behavior even though the 
hardware on BeagleBone Black sets it. In the other case where transmission
DMA channel zero does not contain any buffer descriptors, step function 
two is applied.

2. Sets the step variable to three. If transmission DMA channel zero contains 
buffer descriptors, the teardown completion bit is set in the first buffer 
descriptor in that channel. Otherwise step function three is applied.
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3. Sets the step variable to four and clears the TX0_HDP register. If 
transmission DMA channel zero contains buffer descriptors, the ownership 
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Figure 30: The transmission teardown automaton. Each circle represents an 
automaton state of the transmission teardown automaton (see the caption of 
Figure 28 for an explanation of automaton states). In the NIC model states 
represented by s0, the transmission teardown automaton is idle. In the NIC model 
states represented by s1, the transmission teardown automaton is active or pending.
The transmission teardown automaton is active in a NIC model state represented 
by s1 if the step variable of the transmission automaton is zero in that NIC model 
state. Otherwise the transmission teardown automaton is pending in that NIC 
model state. In the NIC model states represented by s2, s3 and s4, the transmission 
teardown automaton is active. The transitions show how the step variable of the 
transmission teardown automaton is modified. The transition from s0 to s1, 
represented by a dashed arrow, is described by write_nic_register. The other 
transitions, represented by continuous arrows, are described by the step functions 
of the transmission teardown automaton. The transition from s0 to s1 occurs when 
the CPU model writes zero to the TX_TEARDOWN register. If transmission DMA 
channel zero contains buffer descriptors when the transmission teardown 
automaton becomes active, the transmission teardown automaton will write 
certain buffer descriptor fields of the first buffer descriptor in that channel. (The 
buffer descriptors that exist in this channel, when the transmission teardown 
automaton becomes active, have not been processed by the transmission 
automaton.) The writes to the first buffer descriptor in transmission DMA channel 
zero are described by the transitions from s1 to s2, from s1 to s3, from s2 to s3 and 
from s3 to s4. If the transmission teardown automaton in a NIC model state 
represented by s1 decides to set the end of queue bit in the buffer descriptor (which 
is decided non-deterministically), the transitions from s1 to s2 and from s2 to s3 
occur. These two transitions set the end of queue and teardown completion bits of 
the buffer descriptor, respectively. Otherwise the transition from s1 to s3 occurs, 
which just sets the teardown completion bit of the buffer descriptor. The transition 
from s3 to s4 occurs when the transmission teardown automaton clears the 
TX0_HDP register and the ownership bit in the buffer descriptor. If transmission 
DMA channel zero contains no buffer descriptors when the transmission teardown 
automaton becomes active (the transmission automaton has processed all buffer 
descriptors in that channel), the transmission teardown automaton will instead 
only perform the transition from s1 to s4. The transition from s1 to s4 only clears the 
TX0_HDP register and accesses no buffer descriptor, since there is none. Finally, 
the transition from s4 to s0 occurs when the transmission teardown automaton 
writes the TX0_CP register with the value 0xFFFFFFFC (the teardown interrupt 
code).

s
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bit is cleared in the first buffer descriptor in that channel, indicating that the
buffer descriptor is not in use by the NIC any more.

4. Sets the step variable to zero, the TX0_CP register to 0xFFFFFFFC, and 
the corresponding interrupt variable to true non-deterministically (either set
to true or not set at all).

5.1.3 Accuracy of the NIC Model

This section discusses the accuracy of the NIC model by focusing on the main 
potential issues:

• Incorrect modeling of the physical NIC due to potential bugs in the NIC 
model.

• Omitted behavior of the physical NIC related to memory accesses due to 
potential overspecification of the atomicity and order of certain operations 
of the physical NIC. Overspecification in this context means that the NIC 
model describes behavior of the physical NIC that is not stated in the NIC 
specification. For instance, in the NIC model the transmission teardown 
automaton first sets the end of queue bit and then the teardown completion 
bit (see the descriptions of step functions one and two of the transmission 
teardown automaton in Subsection 5.1.2.4). However, the physical NIC 
might perform these two operations in the opposite order.

5.1.3.1 Potential Bugs in the NIC Model

The main source for introducing bugs in the NIC model is misunderstandings of 
the NIC specification. The NIC specification is in general informal and vague. Two
issues encountered in the NIC specification are contradictions (e.g. whether a 
certain bit is set in the buffer descriptor addressing the first part of a frame or in the
buffer descriptor addressing the last part of the same frame), and unspecified 
operations performed by the physical NIC (e.g. whether a certain bit is set in a 
buffer descriptor). The ambiguities in the NIC specification can sometimes be 
solved by (i) common sense, (ii) concluding a fact from several statements in the 
NIC specification, (iii) making the NIC model enter a dead state, or (iv) with non-
determinism or several deterministic models as discussed in the two last 
paragraphs in Subsection 5.1.3.2.

The NIC specification contains no information about the parallelism or atomicity 
of the operations of the physical NIC that are described by the NIC model. Since 
the transitions of the automata of the NIC model are interleaved, the operations of 
the physical NIC that are described by different automata are not described by the 
NIC model to occur in parallel. The NIC model might therefore not correctly 
describe the behavior of the physical NIC. This sequential description property of 
the NIC model is probably not an issue for two reasons. First, each transition of an 
automaton describes one fine-grained operation of the physical NIC, which 
accesses either one byte of the memory or one byte or one field of a NIC register. 
Second, the NIC model includes all possible interleavings of all automaton 
transitions (since nic_execute selects automaton transitions non-deterministically). 
If the physical NIC accesses memory or NIC registers at a granularity finer than at 
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the byte and field granularity, the physical NIC accesses memory or NIC registers 
at the bit granularity, which is probably too primitive (which is motivated for 
memory accesses in the next Subsection 5.1.3.2).

To ease the construction of the NIC model and to minimize the number of bugs in 
it, the focus of the NIC model is on the operations of the physical NIC that affect 
which memory accesses the physical NIC performs. However, focusing on 
memory accesses and excluding many other operations of the physical NIC opens 
up the possibility of the NIC model to not describe some operations of the physical
NIC that affect which memory accesses the physical NIC performs. Bugs of this 
type thwarts the purpose of the NIC model of being a valid model for proving that 
only signed Linux code is executed.

To avoid introducing bugs in the NIC model due to misunderstandings of the NIC 
specification, carefully selected parts of the NIC specification were read slowly 
several times and the NIC device driver in Linux 3.10 was studied in detail.

However, there are two exceptions with respect to the memory access focus of the 
NIC model. The first exception is that the NIC model describes how the physical 
NIC operates when a single frame is addressed by several buffer descriptors, even 
though Linux uses only one buffer descriptor to address a frame. Adding this 
description of the operation of the physical NIC to the NIC model increases the 
complexity of the NIC model but also its generality.

The second exception is that the NIC model also describes frame completion and 
teardown interrupts (the interrupts used by Linux). Describing these interrupts 
allows reasoning about control flow of programs executed by the physical CPU, 
and makes the NIC model useful for proving properties not only dependent on 
memory accesses. Adding descriptions of interrupts to the NIC model has 
negligible impact on the correctness of the NIC model for describing which 
memory accesses the physical NIC performs. The reason is that the interrupt logic 
of the NIC model is simple and decoupled from the rest of the logic of the NIC 
model.

Another source for introducing bugs in the NIC model is typing errors. Such and 
other types of bugs can potentially be found by performing correctness tests on the 
NIC model. Such correctness tests have not been performed since the NIC model is
not implemented in HOL4. However, it is desirable to perform such tests before 
the NIC model is used to prove that only signed Linux code is executed. For 
instance, the physical NIC and the model of the NIC can be configured to access 
an identical set of memory addresses, and the physical memory and the model of 
the memory can be set to contain identical data, for several different scenarios. To 
test whether the NIC model correctly describes which memory accesses the 
physical NIC performs, it can then be checked if the physical NIC and the model 
of the NIC transmit and receive identical data.

Otherwise, the construction methodology of the NIC model has been simplicity to 
make it correct:

• Modeling the five tasks of the physical NIC as five separate and decoupled
automata, thereby isolating the logic of the NIC model that describes the 
operations of a single task.
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• Describing most transitions by one step function, most of which include a 
small amount of logic, making the description of one transition simple.

• Specifying the pseudocode of the NIC model to have a logical structure 
that is similar to the descriptions in the NIC specification of the modeled 
operations of the physical NIC. For instance, each if statement in the NIC 
model reflects one coherent decision, instead of several unrelated decisions
that have been condensed into one if statement to minimize code size. This
methodology keeps the logic of the NIC model simple and accurate.

• Making the NIC model enter a dead state if an operation of the physical 
NIC is either not clearly specified or not used by Linux, which reduces the 
complexity of the NIC model.

5.1.3.2 Issues regarding Memory Accesses of the NIC Model

The focus of the NIC model is to describe which memory accesses the physical 
NIC performs. For this purpose, the NIC model mainly describes how the 
CPDMA_SOFT_RESET, CPPI_RAM, HDP, CP and TEARDOWN registers affect
the operation of the physical NIC. It is critical for the NIC model to describe all 
operations of the physical NIC that affect the content of CPPI_RAM since the 
content of CPPI_RAM affects which memory accesses the physical NIC performs. 
For instance, if two buffer descriptors overlap and the physical NIC performs a 
write to a field of one of the buffer descriptors, then that write can potentially also 
modify the buffer pointer or buffer length fields of the other buffer descriptor. 
Hence, the physical NIC can potentially reconfigure itself to access other physical 
memory addresses than originally configured by the software to access. An 
example of this behavior of the physical NIC is shown in Figures 31 and 32.

The NIC model describes all operations of the physical NIC that affect the content 
of CPPI_RAM. However, some operations of the physical NIC that perform writes 
to CPPI_RAM depend on values of registers of the physical NIC not included in 
the NIC model. The NIC model therefore describes those CPPI_RAM writes by 
non-deterministically selecting the value to write. Some of the buffer descriptor 
fields that are written non-deterministically are also related. This relationship 
restricts which values of those buffer descriptor fields that are valid to write. Since 
the values to write are chosen non-deterministically, those buffer descriptor fields 
might contain inconsistent values. This is not a problem because the NIC model 
also includes execution traces where the buffer descriptor fields are written with 
consistent values, since the values are chosen non-deterministically.

One important issue of the NIC model is its potential overspecification of 
describing the order in which certain operations are performed by the physical 
NIC, and the granularity of those operations (i.e. how much work each atomic 
operation performs). For instance, the NIC specification does not specify:

• Whether the SOP bit is set before the EOP bit in receive buffer descriptors.

• Whether all buffer descriptors are read before a received frame is stored 
into the data buffers addressed by those buffer descriptors.
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Figure 31: Overlapping buffer descriptors. The physical NIC is about to start 
transmission of the frame located in the two data buffers addressed by the two 
buffer descriptors located at 0x4A102000 (value of TX0_HDP) and 0x4A1020A0. 
The size of the frame is 0x123 bytes, as specified by the Buffer Length fields (BL) 
of these two buffer descriptors (0x100+0x23) and by the 11 least significant bits of 
the Flags field of the first buffer descriptor (0x123). In the Flags field of the first 
buffer descriptor, the start of packet and ownership bits are set to one, giving that 
Flags field the value 0xA0000123. The physical NIC is enabled for reception and 
can store the first received frame at the location addressed by the Buffer Pointer 
field (BP) of the buffer descriptor located at 0x4A102008 (value of RX0_HDP). 
Since this Buffer Pointer field overlaps the Flags field of the first buffer descriptor 
in the transmission DMA channel, the data buffer for reception is located at 
0xA0000123. (This data buffer address happens to be outside RAM on Beaglebone 
Black. The NIC specification does not specify how the physical NIC operates when
a data buffer is outside RAM, or when the Next Descriptor Pointer field, NDP, 
contains an address outside CPPI_RAM, which is the case for this receive buffer 
descriptor where it is equal to 0x100.) In Flags field of the receive buffer 
descriptor, the start of packet, end of packet and ownership bits are set to one, 
giving that Flags field the value 0xE0000000. The 11 least significant bits of that 
Flags field contains the size of a received frame, and is set by the physical NIC 
after a frame is received. The Buffer Length field of the receive buffer descriptor is 
set to 0x123, indicating that the size of the addressed data buffer is 0x123 bytes.
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• The order in which bytes are read of buffer descriptors or frames to 
transmit.
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Figure 32: Modifications of overlapping buffer descriptors potentially giving the 
control of the system to Linux. The figure shows the same state as is shown in 
Figure 31 but after the physical NIC has processed the two buffer descriptors in 
the transmission queue. (No frame has been received during this processing.) 
When the physical NIC has transmitted a frame, it clears the ownership bit in the 
buffer descriptor that has the start of packet bit set (bit 29 in the Flags field). In 
this case, the physical NIC has cleared bit 29 of the Flags field of the buffer 
descriptor located at 0x4A102000, changing its value from 0xA0000123 to 
0x80000123. This makes the overlapping Buffer Pointer field of the receive buffer 
descriptor at 0x4A102008 contain 0x80000123. Hence, if the physical NIC now 
receives a frame, it will store that frame at 0x80000123. Since the Buffer Length 
field of the receive buffer descriptor is equal to 0x123, only the first 0x123 bytes of 
that frame will be stored in RAM, possibly ending at 0x80000245. If that memory 
region is allocated to the hypervisor (as is shown in this example), the physical 
NIC might overwrite code or data of the hypervisor. This might result in that the 
control of the system is given to Linux.
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• The order in which the operations listed in the previous three item bullets 
are performed and the granularity of these operations.

Due to the lack of this sort of information, assumptions have been made about the 
order in which certain operations are performed by the physical NIC and the 
granularity of those operations.

The lack of information of the granularity of the operations is handled by 
specifying the NIC model to describe those operations at a granularity that is as 
fined-grained as reasonable. That is, according to the NIC model, an atomic 
operation of the physical NIC is accessing at least one byte of the memory or one 
byte or field of a NIC register. As discussed in the previous subsection, the 
granularity of NIC register accesses performed by the physical NIC is probably not
more fine-grained than that.

Consider the granularity of memory accesses. The physical CPU, memory and NIC
communicate (excluding interrupts) by means of the OCP 2.2 protocol [32]. The 
OCP 2.2 protocol allows data transfers that are not byte multiples: "OCP supports 
word sizes [transfer width in bits] of power-of-two and non-power-of-two as would
be needed for a 12-bit DSP core" [87]. Data transfers not being byte multiples are 
probably not implemented in the chip containing the physical CPU, memory 
controller and NIC. The reason is that it does not make sense for these components 
to intact at such a granularity: The ARMv7 CPU has only instructions for 8-bit, 16-
bit, 32-bit and 64-bit memory accesses, ARM instructions are 32 bits wide (which 
are fetched from memory) [33], and the physical NIC only transfers frames whose 
sizes are multiples of bytes [32].

However, the potential overspecification of the order of certain operations might be
a problem. If sequences of operations that perform writes to CPPI_RAM are not 
described accurately by the NIC model, the NIC model might not read some values
of CPPI_RAM that the physical NIC reads. Since the content of CPPI_RAM 
determines which memory accesses the physical NIC performs, the NIC model 
might therefore not describe certain memory accesses that the physical NIC 
performs. This is of course not desirable since memory accesses have a critical role
in the reliability of the proof of that only signed Linux code is executed. There are 
at least two potential solutions to this potential overspecification problem.

One potential solution is to construct a single NIC model which non-
deterministically selects the next transition to perform, thereby describing several 
orders to perform a certain set of operations of the physical NIC. Another potential 
solution is to construct multiple NIC models where each model is deterministic 
with respect to the order of the operations, but such that all NIC models together 
cover all possible orderings of performing the operations. A property is then proved
on the single non-deterministic NIC model or on all deterministic NIC models.

The reason for having multiple deterministic NIC models instead of one non-
deterministic NIC model is because a set of deterministic NIC models probably 
describes the operation of the physical NIC more accurately. The next operation 
performed by the physical NIC is probably not selected non-deterministically. The 
increased accuracy provided by a set of deterministic NIC models compared to one
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non-deterministic NIC model is needed if properties to prove depend on whether 
operations of the physical are selected deterministically or non-deterministically.

Having these two deterministic and non-deterministic approaches in mind for 
describing the operation of the physical NIC, it might be desirable to simplify the 
current NIC model. The only relevant simplification is to modify the current NIC 
model to only describe how the physical NIC operates when a single frame is only 
addressed by a single buffer descriptor, instead of being addressed by several 
buffer descriptors. Such a simplified NIC model can probably be used as a starting 
point to make it feasible to describe the operation of the physical NIC according to 
these two deterministic and non-deterministic approaches.

5.1.3.3 Conclusions

To summarize, the following questions are related to the problems that exist with 
the NIC specification and the NIC model:

• What do certain operations actually perform (e.g. what does the reset 
operation actually do)?

• What is the granularity of certain operations (e.g. is the CP register set to 
0xFFFFFFFC simultaneously as the HDP register is zeroed or are these two
operations performed by two separate atomic operations)?

• What is the order of performance of certain operations (e.g. is the SOP bit 
set first and then the EOP bit or are these two operations performed in the 
opposite order)?

Assuming that the NIC specification mentions the operations of the physical NIC 
that affect which memory accesses the physical NIC performs (which is a 
reasonable assumption), and since the transitions of the NIC model are relatively 
fine-grained, the critical issue with the NIC model is its description of the order in 
which the physical NIC performs its operations.

The NIC model, in its current state, might not be perfect but it is still a well-made 
ground that can be used for making relatively accurate analyzes of which memory 
accesses the physical NIC performs. The NIC model provides formal descriptions 
for the interesting behavior of the physical NIC (performed memory accesses and 
asserted interrupts as the physical NIC is configured by the NIC device driver in 
Linux 3.10), and it also illustrates how the operation of the physical NIC can be 
described formally. The applicability of the NIC model also depends on the desired
reliability of the formal proof of that only signed Linux code is executed.

5.2 Real Model
The real model is a transition system that describes the operation of the hardware 
upon which the hypervisor, the monitor and Linux run on. Subsection 5.2.1 briefly 
describes the real model. Subsection 5.2.2 discusses the accuracy of the real model.
Subsection 5.2.3 discusses some issues and the applicability of the real model. 
Subsection 5.2.4 presents the formalization of the real model, and which is used in 
the proof plan in Chapter 6 to reason that only signed Linux code is executed.
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5.2.1 Device Model Framework Instantiated with the NIC 
Model

By instantiating the device model framework (described in Subsection 2.4.1) with 
a HOL4 implementation of the NIC model and the memory state component with 
the binary images of the hypervisor, the monitor and Linux, a formal description is 
obtained of all executions of a system consisting of an ARMv7 CPU, a memory, 
the NIC on Beaglebone Black, the hypervisor, the monitor and Linux. This formal 
description is in the form of a transition system, called the real model. Figure 33 
illustrates the structure of the device model framework instantiated with a HOL4 
implementation of the NIC model (cf. Figure 13 in Subsection 2.4.1). The state of 
the real model consists of the state of the device model framework but with the 
general device state component instantiated with the state of the NIC model. That 
is, the state of the real model consists of the states of the ARMv7 ISA model 
(including the state of the memory), the NIC model, and the device model 
framework. (The MMU model does not involve states as will be seen in Subsection
5.2.4.3.)

There are three types of transitions depending on which state components of a real 
model state a transition might affect:
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Figure 33: The device model framework instantiated with a HOL4 implementation 
of the NIC model. The resulting hardware model describes system executions of 
hardware consisting of an ARMv7 CPU with an MMU, a memory, and the NIC on 
BeagleBone Black. The real model is obtained by instantiating the memory state 
component of this hardware model with the binary images of the hypervisor, the 
monitor and Linux. The real model allows formal reasoning of how this hardware 
executes the hypervisor, the monitor and Linux, and the real model can therefore 
be used to formally prove that only signed Linux code is executed in this system.
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• Transitions describing the execution of CPU instructions not accessing NIC
registers: Each such transition only affects the states of the models of the 
physical CPU and the physical memory.

• Transitions describing the execution of the physical NIC: Each such 
transition only affects the states of the models of the physical NIC and the 
physical memory.

• Transitions describing the execution of CPU instructions accessing NIC 
registers: Each such transition only affects the states of the models of the 
physical CPU and the physical NIC.

The non-deterministic scheduler of the device model framework allows the real 
model to include all possible interleavings of these transitions of the CPU and NIC 
models. Figure 34 gives a graphical illustration of transitions in the real model (cf. 
Figure 14 in Subsection 2.4.1).

For these reasons, the real model can be used to formally reason about the 
hardware that executes the hypervisor, the monitor and Linux. In particular, the 
real model can be used to formally prove in HOL4 that in this system, only signed 
Linux code is executed. The reason for using the device model framework as a 
base for formally proving that only signed Linux code is executed is because 
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Figure 34: A graphical illustration of transitions in the real model. A transition 
with the label CPU describes the execution of one CPU instruction. A transition 
with the label NIC describes one execution step performed by the physical NIC. 
These latter transitions are described by nic_execute and memory_byte (see 
Subsection 5.1.1). The device model framework function advance_single applies 
nic_execute to let the NIC model perform an autonomous transition and 
potentially issue a memory read request. If a memory read request is issued, 
advance_single also applies memory_byte to give the value of the addressed 
memory byte to the NIC model (see Subsection 2.4.1). This figure illustrates the 
non-determinism in both the device model framework and in the NIC model. The 
transitions r1 → r2 and r1 → r8 are a result of the non-determinism in the device 
model framework. In the real model state r1, if the non-deterministic scheduler of 
the device model framework selects the CPU model to perform a transition, the 
transition r1 → r2 is performed. If the NIC model is selected, the transition r1 → r8 
is performed. The transitions r1 → r7 and r1 → r8 are a result of the non-
determinism in the NIC model, depending on which automaton of the NIC model 
that is selected by nic_execute to perform the next transition of the NIC model.
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PROSPER is familiar with the CPU model and the device model framework, and 
the usage of the device model framework therefore makes the results of this thesis 
project usable for PROSPER.

An important aspect of the real model is the four I/O device model functions that 
the device model framework applies for a device: d_read, d_write, progress and 
receive (described in Subsection 2.4.1). These four functions are instantiated by the
NIC model functions read_nic_register, write_nic_register, nic_execute and 
memory_byte, respectively (described in Subsection 5.1.1). The device model 
framework should apply these four NIC model functions in the following 
situations. read_nic_register and write_nic_register are applied when the CPU 
model performs a transition that accesses a physical address in the interval 
[0x4A100000, 0x4A103FFF] (the physical addresses of the NIC registers). 
nic_execute is applied by advance_single when the non-deterministic scheduler of 
the device model framework decides that the NIC model shall perform an 
autonomous transition. If nic_execute returns a memory read request, 
advance_single also applies memory_byte to give the NIC model the value of the 
requested byte.

5.2.2 Accuracy of the Real Model

This subsection discusses how accurately the real model describes the hardware by
considering:

• Interactions between the physical CPU, memory and NIC.

• Cache behavior.

• Some assumptions made in the real model about the hardware.

• Accuracy and correctness of the individual models constituting the real 
model.

5.2.2.1 Interaction between the Physical CPU, Memory and NIC

In reality the physical CPU and the physical NIC execute in parallel, but in the real
model their executions are described to occur in serial. The parallel behavior of the
hardware might still not be excluded by the real model. The reason is that when the
physical CPU and the physical NIC access different resources, they execute 
identically irrespectively of whether they execute in parallel or in serial. The 
critical behavior for the real model to describe correctly is therefore the interaction 
between the physical CPU and the physical NIC. That interaction occurs via 
interrupts, memory accesses and NIC register accesses. This subsection compares 
how the real model describes these three types of interactions with how the 
hardware performs them.

In the real model NIC interrupts are generated and detected atomically. This 
description is probably correct since it is enough for the hardware to communicate 
interrupts with a single bit.

Consider memory accesses performed by the CPU model. The CPU model 
atomically accesses 8-bit bytes that are byte aligned, 16-bit halfwords that are 
halfword aligned and 32-bit words that are word aligned in memory. Memory 
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accesses performed by the CPU model that are unaligned are split up into several 
atomic bytewise accesses. This description of memory accesses is in accordance 
with the ARMv7 specification [33] and the operation of the memory controller that
completes each memory access before it starts to process another one [32].

Consider memory accesses performed by the NIC model. The NIC model accesses 
single bytes in memory atomically. Due to the non-deterministic scheduler of the 
device model framework, the real model includes sequences of consecutive 
transitions of the NIC model, where each such transition accesses a single byte in 
memory. Hence, if the physical NIC accesses multiple bytes in memory atomically,
that behavior is also described by the real model. As was motivated in Subsection 
5.1.3.2, each atomic memory access performed by the physical NIC probably only 
transfers a multiple of bytes. It is therefore probable that the real model correctly 
describes memory accesses performed by the physical NIC.

Consider NIC register accesses. In the real model, if the CPU model accesses a 
NIC register and the address is aligned, the access is atomic. If the address is 
unaligned, the NIC model enters a dead state, symbolizing an unknown operation. 
According to the ARMv7 specification, aligned accesses are atomic. Considering 
the meaning of the physical NIC registers as described by the NIC specification, it 
does not make sense for the physical NIC to not atomically return all 32 accessed 
bits of a NIC register. For these reasons the real model probably correctly describes
how the physical CPU accesses NIC registers. The NIC model describes NIC 
register accesses at the byte and field granularity, and as discussed in Subsection 
5.1.3.1 it is unlikely that the physical NIC accesses NIC registers at the bit 
granularity.

Since the real model probably describes interrupts, memory accesses and NIC 
register accesses correctly, it is probably not a problem that the real model 
describes the executions of the physical CPU and NIC to occur in serial, despite 
that the executions occur in parallel in reality.

5.2.2.2 Lack of Cache Behavior

Cache behavior is also relevant to consider. The property of that only signed Linux 
code is executed depends on the CPU's view of memory content. That is, both 
cache and memory contents. It is therefore desirable that the real model correctly 
reflects the contents of the caches and the memory. However, the real model does 
not describe cache behavior.

Imagine that the hardware performs the following steps:

1. The physical NIC writes a byte to memory at a location that is also 
currently being held in the cache.

2. The physical CPU reads a 32-bit word from memory that is transferred to 
the cache. None of the bytes of this word are located at the address where 
the byte written by the physical NIC in step 1 is stored. The transfer of the 
read 32-bit word to the cache causes the cache to evict the cache line that 
addresses the byte that the physical NIC wrote in step 1. This causes the 
byte the physical NIC wrote in step 1 to be overwritten with the byte value 
that is stored in the cache of the evicted cache line.
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3. The physical CPU reads a 32-bit word from memory that is transferred to 
the cache. One of the constituent bytes of this word is located at the address
where the byte written by the physical NIC in step 1 is stored. This read 
causes the cache line that was evicted in step 2 to be transferred from 
memory back to the cache. Since the value of the byte that the physical NIC
wrote in step 1 was overwritten in step 2, the physical CPU reads the value 
that the byte had before step 1 occurred. The physical CPU does therefore 
not read the value that the physical NIC wrote.

The real model describes these three steps as follows:

1. The NIC model writes the byte value to memory.

2. The CPU model reads a 32-bit word from memory that does not share an 
address with the byte the NIC model wrote in step 1.

3. The CPU model reads the 32-bit word from memory that contains the byte 
value the NIC model wrote in step 1.

In this scenario the CPU model reads one value while the physical CPU reads 
another value. This might not be a problem if the non-deterministic scheduler of 
the device model framework can produce another interleaving that reflects the 
behavior of the hardware. In this case the scheduler can produce the interleaving 
where the CPU model performs its two reads before the NIC model performs its 
write. Such a scheduling makes the CPU model read the same value as the physical
CPU. A detailed analysis is required to answer whether for each execution trace 
that can be generated by the hardware, there exists an execution trace in the real 
model, such that the CPU model observes the same values in the execution trace in
the real model that the physical CPU observes in the execution trace generated by 
the hardware. Hence, the lack of description of cache behavior in the real model 
might be an issue.

5.2.2.3 Assumptions in the Real Model

This subsection discusses whether two assumptions that the real model does about 
the hardware affect its accuracy with respect to describing hardware behaviors that 
are relevant for proving that only signed Linux code is executed. The first 
assumption is that devices do not react to the physical CPU reading their registers 
such that those reactions affect the read register values. Since reads of the physical 
NIC registers that are included in the NIC model do not cause side effects, this 
assumption is not a problem.

The second assumption is that the hardware immediately satisfies memory read 
requests issued by the physical NIC. This means that in the real model no 
transitions of the CPU or NIC models occur in between a pair of transitions of the 
NIC model that issue a memory read request and handle the corresponding reply. 
When the hardware satisfies memory read requests issued by the physical NIC is 
unspecified. Hence, the hardware might satisfy memory read requests issued by the
physical NIC at arbitrary points in time. This raises the concern of whether this 
limitation of the real model causes it to omit descriptions of hardware behaviors 
that are relevant for proving that only signed Linux code is executed.
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To answer whether it is a problem that the real model immediately satisfies 
memory read requests issued by the NIC model, two execution traces generated by 
the CPU and NIC models are compared. Consider a trace of a general form, which 
starts with a memory read request transition, followed by an arbitrary sequence of 
transitions of the CPU and NIC models, and ends with a corresponding memory 
read request reply transition. Consider also a trace in the real model that starts from
the same state as the general trace starts from. The first transition is the same 
memory read request transition that is the first transition in the general trace. The 
second transition is the corresponding memory read request reply transition. The 
following sequence of transitions is generated by applying the transition functions 
of the CPU and NIC models in the same order as they were applied to generate the 
sequence of transitions in the general trace, excluding the memory read request and
reply transitions. (Two such traces are shown in Figure 35.) These two traces 
describe identical hardware behaviors, except for when the issued memory read 
request is satisfied. The reasons for why the two traces describe nearly identical 
hardware behaviors are explained in what follows.

Memory read request reply transitions are independent of the following transitions,
and vice versa:

• Transitions performed by the CPU model: The operations performed by 
memory read request reply transitions do not operate on the byte values 
read from the memory (the physical NIC ignores memory content). They 
only operate on and update state components that are only accessed by the 
transitions performed by the transmission automaton of the NIC model. 
Memory read request reply transitions are therefore independent of 
transitions performed by the CPU model, and vice versa.

• Transitions performed by the NIC model in between a pair of memory read
request and reply transitions: Consider the following three properties of the
NIC model. First, memory read request reply transitions are only 
performed by the transmission automaton. Second, the transmission 
automaton waits for a pending memory read request to be satisfied before 
it performs additional transitions (the transmission automaton is active 
during this time). Third, the initialization and transmission teardown 
automata do not perform transitions while the transmission automaton is 
active. These three properties imply that only the reception and reception 
teardown automata can perform transitions of the NIC model in between a 
pair of memory read request and reply transitions. Memory read request 
reply transitions are independent of transitions performed by the reception 
and reception teardown automata, and vice versa, for the same reason as 
memory read request reply transitions and transitions performed by the 
CPU model are independent of each other.

Hence, a memory read request reply transition is independent of the transitions that
occur before it and after its corresponding memory read request transition, and vice
versa.
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Figure 35: An example of two traces in which memory read requests issued by the 
NIC model are satisfied at different points in time. Only step function four of the 
NIC model, transmit_step4, issues memory read requests. The NIC model function 
memory_byte handles memory read request replies. Each function ti, 1 ≤ i ≤ 3, is 
either the transition function of the CPU model, possibly interacting with the two 
NIC model functions describing NIC register accesses (read_nic_register and 
write_nic_register) or the transition function of the NIC model describing 
execution steps of the physical NIC (nic_execute). (These functions are defined to 
operate on CPU and NIC model states, but for simplicity they are shown as 
operating on real model states. In this figure, the intension is that the operations 
performed by these functions are the operations they are defined to perform, but 
performed on the state components of real model states that hold CPU and NIC 
model states.) The trace to the left has a general form since the memory read 
request is not satisfied immediately. The trace to the right is included in the real 
model since the memory read request is satisfied immediately. The traces describe 
the same hardware behavior, with the exception of when the memory read request 
is satisfied. There are three reasons for this similarity. First, the operations 
performed by memory_byte do not the operate on the byte value read from 
memory. Second, the state components operated on or updated by memory_byte 
are not operated on or updated by ti, 1 ≤ i ≤ 3, and vice versa. Third, the traces are
generated by the same sequence of function applications, excluding the application
of memory_byte. Due to the independence between memory_byte and ti, 1 ≤ i ≤ 3, 
it does not matter if ti, 1 ≤ i ≤ 3, are applied in the same order before or after 
memory_byte is applied: The operations performed by the application of 
memory_byte on s4 and the operations performed by the application of 
memory_byte on s1 are identical and those operations operate on and update the 
same state components with equal values, and similarly for the operations 
performed by the applications of ti on si and s′i+1, 1 ≤ i ≤ 3. Hence, there exists a 
one-to-one relationship between the transitions in the general trace and the 
transitions in the real model trace: Related transitions perform identical 
operations. The transitions s0 → s1, s1 → s2, s2 → s3, s3 → s4 and s4 → s5 in the 
general trace are related to the transitions s0 → s1, s'2 → s'3, s'3 →s'4, s'4 → s5 and 
s1 →s'2 in the real model trace, respectively.
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The general trace and the real model trace start from the same state. Also, their 
sequences of transitions are generated by the same sequence of function 
applications, except for the generations of the memory read request reply 
transitions, which are independent of the transitions following the memory read 
request transitions and vice versa. There exists therefore a one-to-one relationship 
between the transitions in the general trace and the transitions in the real model 
trace: For each pair of related transitions, those two transitions perform identical 
operations operating on and updating the same state components with equal values.
In addition, the transitions in a related pair occur at the same positions within their 
traces, excluding the memory read request reply transitions. Hence, the only 
difference between the general trace and the real model trace is when the memory 
read request is satisfied. Figure 35 and its caption clarify this reasoning.

For proving that only signed Linux code is executed, the relevant hardware 
property that the real model must describe accurately is how the physical CPU 
executes CPU instructions. Traces of the general form describe hardware behavior 
where memory read requests are satisfied at arbitrary points in time. The only 
difference between general traces and real model traces is their description of when
memory read requests are satisfied. This only difference means that general traces 
and real model traces identically describe how the physical CPU executes CPU 
instructions. Describing memory read requests to be satisfied immediately 
therefore does not cause the real model to omit descriptions of hardware behaviors 
that are relevant for proving that only signed Linux code is executed. Hence, the 
conclusion is that it is not a problem that the real model assumes that the hardware 
immediately satisfies memory read requests issued by the physical NIC.

5.2.2.4 Accuracy of Individual Models

It is also important to consider potential bugs in the models that constitute the real 
model. The ARMv7 ISA model [84] has been tested by means of large test 
programs, consisting of randomly chosen instructions in order to cover the 
complete model. These test programs were executed on the model and on three 
development boards with their execution results compared. Issues of the NIC 
model were discussed in the previous chapter, and how the correctness of the 
MMU model [86] has been checked is unknown.

5.2.3 Conclusion and Discussion

The most important issues of the real model are (with respect to prove that only 
signed Linux code is executed):

• The potential overspecification of the order of the operations of the 
physical NIC.

• The absence of describing the cache behavior of the hardware.

Even if the real model does not describe the complete behavior of the hardware, it 
still describes most of the behavior of the hardware that is relevant for proving that 
only signed Linux code is executed. The real model provides this description by 
means of a transition system. Each transition in the transition system describes how
the execution of one CPU instruction or one fine-grained NIC operation modifies a
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detailed hardware state. By means of non-deterministic schedulers, the transition 
system includes all possible interleavings of these transitions. These features of the
real model, combined with that most of the real model is already implemented in a 
theorem prover (namely HOL4), makes the real model attractive to use to formally 
prove that only signed Linux code is executed.

5.2.4 Formalization of the Real Model

The purpose of this section is to formally describe the real model on paper. This 
formal description is what the proof plan in Chapter 6 refers to when reasoning that
only signed Linux code is executed. Subsection 5.2.4.1 describes the data type of 
the states in the real model. Subsection 5.2.4.2 describes the transition rules that 
describe the transitions in real model. Subsection 5.2.4.3 uses the data type of the 
states and the transition rules to define a four tuple that denotes the sets of states, 
initial states, transitions and execution traces in the real model. The components of 
that four tuple are used in the proof plan to refer to the real model.

5.2.4.1 States in the Real Model

A state in the real model has the data type real_state, an instance of which is called 
a real state. A real state represents the state of the hardware at particular point in a 
hardware system execution. The state components of a real state are the states of 
the ARMv7 ISA model, which includes the state of the memory model, the NIC 
model, and the device model framework. Figure 36 shows the state components of 
real_state.

5.2.4.2 Transition Rules of the Real Model

The transition rules described in this subsection describe all transitions in the real 
model (see Subsection 2.1.2 for an explanation of transition rules and labeled 
transition systems):

• CPU transitions: Generated by the transition rules concerned with the CPU 
model. One CPU transition in the real model describes the execution of one
CPU instruction.

• NIC transitions: Generated by the transition rules concerned with the NIC 
model. One NIC transition in the real model describes the execution of one 
fine-grained operation of the physical NIC. If that operation issues a 
memory read request, a NIC transition also describes one fine-grained 
operation of the physical NIC for handling the reply to that memory read 
request. That is, one NIC transition in the real model is one autonomous 
transition of the NIC model possibly followed by one memory read request 
reply transition of the NIC model, if the autonomous transition issued a 
memory read request.

The transition rule that generate CPU transitions are described first and then the 
transition rules that generate NIC transitions. The transition rules reflect how the 
device model framework is implemented (similarly to how the device model 
framework functions next and advance_single operate, as described in Subsection
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Figure 36: The data type of a real state, denoted by real_state. This syntax follows 
the pseudocode notation described in Appendix A. real_state contains three state 
components, cpu, memory and nic, having data types cpu_state, word32 → word8 
and nic_state, respectively. cpu and memory contain the state of the CPU model 
and nic contains the state of the NIC model. Sreal denotes the set of all possible 
instances of real_state. If r  S∈ real, then the cpu, memory and nic state components 
of r are referred to as r.cpu, r.memory, and r.nic, respectively. The cpu state 
component has in turn five state components (only the five state components of cpu
that are relevant for this thesis are shown). cpu.uregs records the contents of all 
general-purpose registers that are accessible in non-privileged mode. cpu.pregs 
records the contents of all general-purpose registers that are only accessible in 
privileged mode. cpu.sregs records the contents of all program status registers. 
cpu.cp15 records the contents of the three coprocessor 15 registers, which are 
related to the MMU. (See Subsection 2.3.1 for an explanation of the meaning of 
these four state components.) cpu.int records whether the NIC model asserts an 
interrupt or not. The memory state component is a function that records the 
contents of the 512 MB of RAM on BeagleBone Black. It takes a 32-bit physical 
address as argument and returns the byte value stored at that address. This 
function is unused for the other 3.5 GB of the physical address space. The nic state
component is explained by comments in the definition of nic_state in Section C.3.

real_state = (
cpu_state cpu,
word32 → word8 memory,
nic_state nic

)
cpu_state = (

user_regs uregs,
privileged_regs pregs,
system_regs sregs,
cp15_regs cp15,
bool int

)
user_regs = (

word32 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15
)
privileged_regs = (

word32 r8_fiq, r9_fiq, r10_fiq, r11_fiq, r12_fiq,
word32 r13_svc, r13_abt, r13_und, r13_irq, r13_fiq,
word32 r14_svc, r14_abt, r14_und, r14_irq, r14_fiq

)
system_regs = (

word32 CPSR,
word32 SPSR_svc, SPSR_abt, SPSR_und, SPSR_irq, SPSR_fiq

)
cp15_regs = (

word32 TTBR0, DACR, DFAR
)



2.4.1), but not how the CPU and NIC models are implemented. However, the 
transition rules are not completely accurate. In particular, CPU instructions 
performing reads or writes to multiple locations in the physical address space are 
not described. This is not an issue for the purposes of the proof plan (describing 
how it can be formally proved that only signed Linux code is executed).

5.2.4.2.1 Transition Rules for CPU Transitions

The ARMv7 ISA and MMU models [84, 86] can be considered to together 
constitute a CPU model that describes how the physical CPU executes individual 
CPU instructions according to the ARMv7 specification [33]. The transition 
function of that CPU model is denoted by cpu_execute:

(cpu_state, word32 → word8) cpu_execute(cpu_state cpu, word32 → word8
memory).

The arguments cpu and memory of cpu_execute describe a physical CPU state and 
a physical memory state, respectively. The return values of cpu_execute describe 
the physical CPU and memory states that the physical CPU and memory enter after
the physical CPU has executed one CPU instruction from the physical CPU and 
memory states described by cpu and memory.

In what follows, it is necessary to find which execution mode the CPU model is in.
The function mode is used for this purpose:

{usr, fiq, irq, svc, abt, und, sys, } ⊥ mode(real_state r).

If the execution mode of the CPU model is defined in the real state r, then mode 
returns the corresponding identifier. Otherwise  is returned. (⊥ mode depends only 
on r.cpu.sregs.CPSR[4:0].)

There are three CPU transition rules, depending on whether the next CPU 
instruction execution does not access a NIC register, reads a NIC register, or writes
a NIC register. The three CPU transition rules correspond to the first step of the 
function next of the device model framework, as described in Subsection 2.4.1.

The transition rule for CPU instruction executions not accessing a NIC register:

(cpu', memory') = cpu_execute(cpu, memory)  ¬∧ nic_access(cpu, memory)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––.

(cpu, memory, nic) →cpu_exec_type(cpu, cpu') (cpu', memory', nic)

This transition rule has the following meaning. Assume the following:

• The next instruction execution by the CPU model transforms cpu and 
memory to cpu' and memory', respectively.

• The instruction execution did not access a NIC register, indicated by the 
predicate nic_access.

There is then a transition from the real state (cpu, memory, nic) to the real state 
(cpu', memory', nic). The label of that transition is determined by the function 
cpu_exec_type:

{CPU, EXC, RET} cpu_exec_type(cpu_state cpu, cpu_state cpu').

cpu_exec_type is defined as follows:
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• If mode(cpu) = usr  ∧ mode(cpu')  {∈ fiq, irq, svc, abt, und}:

cpu_exec_type(cpu, cpu') = EXC.

That is, the execution of the next instruction raises an exception (sys mode 
cannot be entered from usr mode).

• If mode(cpu)  {∈ fiq, irq, svc, abt, und, sys}  ∧ mode(cpu') = usr:

cpu_exec_type(cpu, cpu') = RET.

That is, the execution of the next instruction causes the CPU model to 
return from an exception handler.

• Otherwise:

cpu_exec_type(cpu, cpu') = CPU.

That is, the CPU model does not raise an exception nor returns from an 
exception handler when executing the next instruction.

The transition rule for NIC register reads is:

pa = cpu_read_nic_register(cpu, memory) ∧
(nic', val) = read_nic_register(nic, pa) ∧

memory' = memory[pa  ↦ val[7:0],
pa + 1  ↦ val[15:8], pa + 2  ↦ val[23:16], pa + 3  ↦ val[31:24]] ∧

(cpu', memory'') = cpu_execute(cpu, memory')
–––––––––––––––––––––––––––––––––––––––––––––––––––––.

(cpu, memory, nic) →CPU (cpu', memory, nic')

The meaning of this transition rule is as follows. Assume the following:

• From the CPU and memory model states, cpu and model, respectively, the 
next CPU instruction execution reads the NIC register at physical address 
pa, as indicated by the function cpu_read_nic_register. If a NIC register is 
not accessed, cpu_read_nic_register returns .⊥

• The NIC model function describing NIC register reads, read_nic_register, 
updates the NIC model state nic to nic', and returns the value val as the read
value of the NIC register located at physical address pa in the NIC model 
state nic.

• memory' is equal to memory but memory' maps the arguments pa, pa + 1, 
pa + 2 and pa + 3 to the byte values val[7:0], val[15:8], val[23:16] and 
val[31:24], respectively. That is, memory'(pa) = val[7:0], etc.

• The next CPU instruction execution (which reads a location in the physical 
address space as determined by cpu_read_nic_register) causes the CPU 
model to update the CPU and memory model states from cpu and memory' 
to cpu' and memory'', respectively.

Since the CPU model only operates on the CPU and memory model states, 
some mechanism is needed to make the CPU model operate on the current 
NIC register value. In this case, the mechanism is to set the entries of 
memory' where the read NIC register is located to the read NIC register 
value val. This causes the CPU model to operate on the value of the NIC 
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register located at pa. (The state of the memory model is used as if it 
represented the physical address space and not the physical memory.) In the
real model, this interaction between the CPU model and the NIC model is 
handled by the device model framework.

Under these four assumptions, there exists a transition from (cpu, memory, nic) to 
(cpu', memory, nic') with the label CPU.

The transition rule for NIC register writes is:

pa = cpu_write_nic_register(cpu, memory) ∧
(cpu', memory') = cpu_execute(cpu, memory) ∧

val = memory'(pa + 3) :: memory'(pa + 2) :: memory'(pa + 1) :: memory'(pa) ∧
nic' = write_nic_register(nic, pa, val)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic) →CPU (cpu', memory, nic')

The meaning of this transition rule is as follows. Assume the following:

• The next instruction execution of the CPU model writes the NIC register 
with the physical address pa, as indicated by cpu_write_nic_register. 
cpu_write_nic_register is similar to cpu_read_nic_register but returns a 
physical address of a NIC register if and only if the next instruction 
execution of the CPU model writes that NIC register. Otherwise,  is ⊥
returned.

• The next instruction execution of the CPU model updates the CPU and 
memory model states from cpu and memory to cpu' and memory', 
respectively.

• Since cpu_execute only operates on the CPU and memory model states, 
cpu_execute updates the memory state to contain the value val that is 
intended to be written to the addressed NIC register. The symbol '::' denotes
the concatenation operator, which is used to concatenate the four bytes the 
CPU model intended to write to the addressed NIC register into one 32-bit 
word.

• The NIC model function describing NIC register writes, write_nic_register,
updates the NIC model state from nic to nic' as a result of writing val to the 
NIC register located at physical address pa in the NIC model state nic.

Under these four assumptions, there exists a transition from (cpu, memory, nic) to 
(cpu', memory, nic') with the label CPU.

Note that for a given state, only one of these three transition rules can be applied. 
The reason is that for the same arguments, nic_access is false if and only if both 
cpu_read_nic_register and cpu_write_nic_register return . In addition, if ⊥
cpu_read_nic_register does not return , ⊥ cpu_write_nic_register returns , and ⊥
vice versa.

5.2.4.2.2 Transition Rules For NIC Transitions

Considering the implementation of the device model framework, there are three 
transition rules related to the autonomous transitions of the NIC model: 

112



autonomous transitions without memory requests, autonomous transitions with 
memory read requests, and autonomous transitions with memory write requests.

The transition rule for autonomous transitions not issuing memory requests:

(nic', , ⊥ i) = nic_execute(nic)  ∧ cpu' = cpu[int  ↦ i]
––––––––––––––––––––––––––––––––––––––––––.

(cpu, memory, nic) →NIC (cpu', memory, nic')

The meaning of this transition rule is as follows. Assume the following:

• The NIC model performs an autonomous transition from nic to nic', which 
does not issue a memory request (denoted by  in the second returned ⊥
component).

• The CPU model state cpu' is equal to cpu, but where the interrupt flag, 
cpu'.int, reflects the interrupt status of the NIC model in the state nic' 
(denoted by i in the third returned component of nic_execute).

Under these two assumptions, there exists a transition from (cpu, memory, nic) to 
(cpu', memory, nic') with the label NIC. This transition rule corresponds to step 1 
of the function advance_single of the device model framework (see Subsection 
2.4.1).

The transition rule for autonomous transitions issuing memory read requests:

(nic', (pa, ), ⊥ i) = nic_execute(nic)  ∧ val = memory(pa) ∧
nic'' = memory_byte(nic', (pa, val))  ∧ cpu' = cpu[int  ↦ i]

–––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic) →NIC (cpu', memory, nic'')

The meaning of this transition rule is as follows. Assume the following:

• The NIC model performs an autonomous transition from nic to nic'. This 
transition issues a memory read request to physical address pa (denoted by 
(pa, ) in the second returned component of ⊥ nic_execute). The transition 
does not updates the interrupt status of the NIC model, but the interrupt 
status of nic' is indicated by i.

• At the physical address pa, memory contains the byte value val.

• When the NIC model in the state nic' is given a memory read request reply 
with the byte value val, read from the memory location with physical 
address pa, the NIC model transitions to the state nic''.

• The CPU model state cpu' is equal to cpu, possibly except for the interrupt 
flag which in cpu' is equal to the interrupt status of the NIC model in the 
state nic' (and nic'' since memory read request reply transitions do not cause
the NIC model to change the interrupt status).

Under these four assumptions, there exists a transition from (cpu, memory, nic) to 
(cpu', memory, nic'') with the label NIC.

The transition rule for autonomous transitions issuing memory write requests:
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(nic', (pa, val), i) = nic_execute(nic)  ∧ val ≠ ⊥
memory' = memory[pa  ↦ val]  ∧ cpu' = cpu[int  ↦ i]
––––––––––––––––––––––––––––––––––––––––––.

(cpu, memory, nic) →NIC (cpu', memory', nic')

The meaning of this transition rule is as follows. Assume the following:

• The NIC model performs an autonomous transition from nic to nic'. This 
transition issues a memory write request to write the byte value val to the 
memory location at physical address pa (denoted by (pa, val) and val ≠  ⊥
in the second returned component of nic_execute and in the second 
conjunct of the premise, respectively). Similarly to transitions issuing 
memory read requests, this transition also does not update the interrupt 
status of the NIC model, but the interrupt status of the NIC model in the 
state nic' is indicated by i.

• memory' is equal to memory, possibly except for the argument pa, which 
memory' maps to the byte value val.

• cpu' is equal to cpu, but with the interrupt flag being equal to the interrupt 
status of the NIC model in the state nic'.

Under these three assumptions, there exists a transition from (cpu, memory, nic) to 
(cpu', memory, nic') with the label NIC.

These last two transition rules, which describe how the real model handles memory
requests issued by the NIC model, correspond to steps 1 and 2 of advance_single 
(see Subsection 2.4.1).

5.2.4.3 Labeled Transition System of the Real Model

This subsection defines a four tuple that the reasoning in the proof plan uses to 
refer to the real model. That four tuple is defined in terms of the labeled transition 
system LTSreal:

LTSreal  (≝ Sreal, ISreal, Lreal, δreal).

Each component of LTSreal is defined as follows:

• Sreal: The set of states in LTSreal. That is, all possible instantiations of the 
data type real_state.

• ISreal  ⊆ Sreal: The set of initial states in LTSreal. Let r  ∈ Sreal. Intuitively, r is in
ISreal if and only if the next instruction execution of the CPU model from 
the state r is the first execution of an instruction located in the memory 
region allocated to Linux. The states in ISreal describe the hardware states 
that hardware system executions enter after they have executed the 
initialization code of the hypervisor and are just about to start the execution
of Linux. Hardware system executions start from hardware states that the 
hardware enter when it is powered on.

Formally, r is in ISreal if and only if the following four conditions hold:

1. There exists an execution trace π = r0 →l_0 r1 →l_1 … →l_n-1 rn, n ≥ 0, 
generated by the device model framework instantiated with the NIC 
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model, such that r0 describes a hardware state that the hardware might 
enter when it is powered on.

2. There exists a state rk in π that is equal to r: 0 ≤ ∃ k ≤ n. rk = r.

3. In the state r, the MMU model maps the value of the program counter 
as executable to a physical address that is allocated to Linux: LCE(r).

LCE (Linux Code is Executed) is formally defined in Section 6.1 by 
means of the MMU model, and is used in the proof plan to denote when
the CPU model executes the binary code of Linux:

bool LCE(real_state r).

4. For all states rl preceding rk in π, the MMU model does not map the 
value of the program counter as executable to a physical address 
allocated to Linux: 0 ≤ ∀ l < k. ¬LCE(rl).

• Lreal  {≝ CPU, EXC, RET, NIC}: The set of labels for the transitions in 
LTSreal. All transitions generated by the transition rules described in 
Subsection 5.2.4.2 have a label in Lreal.

• δreal  ⊆ Sreal⨯Lreal⨯Sreal: The set of transitions in LTSreal. A transition (r, l, r') 
is written as r →l r'. r →l r' is in δreal if and only if r  ∈ Sreal and r →l r' can 
be generated by a transition rule described in Subsection 5.2.4.2.

The real model is a transition system that is formally defined in HOL4 by the 
device model framework instantiated with a HOL4 implementation of the NIC 
model described in Subsection 5.1 and Appendix C, and with the binary images of 
the hypervisor, the monitor and Linux. In this thesis, the real model is referred to 
by means of the four tuple RM  (≝ S, IS, δ, Π). The components of RM are defined 
by means of LTSreal as follows (Figure 37 gives a graphical illustration of the real 
model):

• RM.S  ⊆ Sreal: The set of states in the real model. A real state r is in RM.S if 
and only if there exists an execution trace r0 →l_0 r1 →l_1 … →l_n-1 rn, n ≥ 0, 
such that:

◦ The execution trace starts in a state from which Linux starts its 
execution: r0  ∈ ISreal.

◦ All transitions in the trace are generated by the transition rules 
described in Subsection 5.2.4.2: 0 ≤ ∀ j < n. rj →l_j rj+1  ∈ δreal.

◦ There exists a state in the trace that is equal to r: 0 ≤ ∃ j ≤ n. rj = r.

Hence, each state in RM.S is reachable from an initial state from which 
Linux starts its execution.

• RM.IS ≝ ISreal: The set of initial states of the real model. The execution of 
Linux starts from a state in RM.IS. Note that RM.IS  ⊆ RM.S.

• RM.δ  ⊆ Sreal⨯Lreal⨯Sreal: The set of transitions in the real model. r →l r' is 
in RM.δ if and only if r  ∈ RM.S and a transition rule described in 
Subsection 5.2.4.2 can generate r →l r', r →l r'  ∈ δreal. Note that r'  ∈ RM.S.

• RM.Π: The set of execution traces in the real model. Let
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π = r0 →l_0 r1 →l_1 … →l_n-1 rn, n ≥ 0.

π  ∈ RM.Π if and only if r0  ∈ RM.IS and each transition in π has been 
generated by some transition rule described in Subsection 5.2.4.2:

0 ≤ ∀ j < n. rj →l_j rj+1  ∈ δreal.

Note that all transitions in traces in RM.Π are in RM.δ, and that all traces in 
RM.Π start from an initial state in RM.IS.

Figure 37 and its caption provides an intuition of the roles of the four components 
of RM. It is upon these four components of RM that the proof plan describes how it
can be formally proved that only signed Linux code is executed. Appendix D 
provides an example of how an execution trace in RM can be generated by means 
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Figure 37: A graphical illustration of the roles of the four components of RM. The 
four tuple RM is used to denote the real model. RM.IS denotes the set of initial 
states in the real model. In this figure, RM.IS contains r0 and r3. RM.S denotes the 
set of states in the real model. In this figure, RM.S contains all states except r10, r11,
r12 and r13. The states r10, r11, r12 and r13 are all instantiations of the data type 
real_state but since they are not reachable from an initial state in the real model, 
they are not included in the real model. Hence, the real model only includes states 
that are reachable from initial states. RM.δ denotes the set of transitions in the real
model. Each such transition is between two states that are included in the real 
model. In this figure, RM.δ contains all transitions except r10 →CPU r11, r11 →CPU r12,
r12 →CPU r13 and r13 →NIC r6. RM.Π denotes the set of execution traces in the real 
model. Each such execution trace consists of a sequence of transitions starting 
from an initial state and in which each transition is in the real model. In this 
figure, RM.Π contains all execution traces starting from r0 or r3. An example of 
such an execution trace is r0 →CPU r1 →NIC r5. RM.S, RM.δ and RM.Π are defined 
by means of the transition rules described in Subsection 5.2.4.2.
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of the transition rules that are described in Subsection 5.2.4.2, and how that trace 
operates on the visited states.

The MMU model [86], being a part of the real model, is denoted by mmu:

word32  { } ∪ ⊥ mmu(real_state r, {PL0, PL1} pl, word32 va, {rd, wt, ex} ar).

The arguments of mmu are a real state r, a privilege level pl that is either equal to 
PL0 or PL1, a virtual address va to translate to a physical address, and the type of 
the requested access ar, signifying either a read, write or execute access request. 
mmu performs a translation table walk on the real state r as the physical MMU 
performs a translation table walk on the hardware state described by r. mmu can be
thought of as operating in three steps. First, mmu checks whether there exists a 
page table entry that maps the virtual address va. Second, mmu checks whether the 
access permissions specified by the page table entry (if found in the first step) and 
the value of the relevant field of the DACR register (stored in r.cpu.cp15.DACR) 
are compatible with the given privilege level pl and access request ar. Third, if the 
checks in the first two steps succeeded, the physical address mapped by the 
identified page table entry is returned. Otherwise  is returned.⊥

5.3 Ideal Model
As mentioned in the opening of this chapter, the proof plan in Chapter 6 is based 
on the simulation proof method. The simulation proof method can be used to prove
that the behavior of one less abstract model is similar to the behavior of another 
more abstract model. If it is proved that the more abstract model satisfies a desired 
property and the less abstract model behaves similarly to the more abstract model, 
it can be proved that the desired property holds on the less abstract model, since 
the two models behave similarly. If the less abstract model describes the behavior 
of an implementation, it can be concluded that the implementation has the desired 
property. In the context of the proof plan, the less abstract model is the real model, 
the more abstract model is the ideal model, and the desired property is only signed 
Linux code is executed.

To prove that only signed Linux code is executed on the real model by means of 
the simulation proof method and the ideal model, the ideal model is defined as a 
transition system similar to the real model, but with one main difference that is 
related to the binary interface. (In this context of Linux, the binary interface is the 
interface between the binary code of Linux and the operations performed by: non-
privileged CPU execution, the execution of the exception handlers, and the NIC. 
That is, the binary interface is the interface between the binary code of Linux and 
the operations that affect the execution of the binary code of Linux.) The ideal 
model describes the following binary interface:

• Non-privileged CPU execution operates as specified by the ARMv7 ISA. 
That is, in the ideal model, the CPU model in non-privileged mode 
executes as specified by the ARMv7 ISA.

• Exception handler execution operates as specified by the software design of
the hypervisor and the monitor, as opposed to their implementation as is the
case in the real model. That is, in the ideal model, privileged CPU 
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execution operates as specified by the software design of the hypervisor 
and the monitor. This formal description provided by the ideal model of 
how the exception handlers in the ideal model operates is the formal 
software design of the hypervisor and the monitor.

• The NIC operates as specified by the NIC specification.

To prove that only signed Linux code is executed on the real model by means of 
the simulation proof method and the ideal model, the following steps can be taken:

1. Prove that only signed Linux code is executed on the binary interface 
described by the ideal model: That is, the formal software design of the 
hypervisor and the monitor provided by the ideal model is proved to be 
correct. Once it has been proved that the formal software design is correct, 
the formal software design can be considered to be the formal specification 
of the implementation of the hypervisor and the monitor. (Considering the 
explanation in the first paragraph of this section, this step corresponds to 
proving the desired property on the more abstract model.)

2. Prove that the execution of the binary code of the hypervisor and the 
monitor operates according to their formal specification provided by the 
ideal model: That is, the implementation of the hypervisor and the monitor 
is proved to be correct with respect to their formal specification.

3. Prove that the executions of the binary code of Linux on the binary 
interfaces described by the ideal model and the real model are identical: To 
prove this property, it must be proved that the binary interfaces described 
by the ideal model and the real model are identical. Since the ideal model 
and the real model describe the binary interface of the exception handlers 
differently (formal software design and implementation, respectively), it 
must be proved that the binary interfaces of the exception handlers 
described by the ideal model and the real model are identical. The proof in 
this third step can therefore utilize the proof in step 2. (This step 
corresponds to proving that the less abstract model behaves similarly to the 
more abstract model.)

Step 3 enables the property proved on the ideal model in step 1 to be transferred 
from the ideal model to the real model. Hence, only signed Linux code is executed 
on the binary interface described by the real model. The conclusion is therefore 
that only signed Linux code is executed in a system consisting of an ARMv7 CPU, 
the NIC on Beaglebone Black, the hypervisor and the monitor. The proof plan 
describes in detail how these proofs can be constructed and how they fit together. 
The following describes the ideal model and decisions behind its design from the 
perspective of the three proof steps listed above.

To ease the construction of the proof of that only signed Linux code is executed on 
the binary interface described by the ideal model (proof step 1), the ideal model 
describes the exception handlers of the binary interface to be executed atomically 
in one transition, as opposed to as in the real model to be executed non-atomically 
in several transitions. These atomic exception handler transitions in the ideal model
occur only when the CPU model is in privileged mode and the non-deterministic 
scheduler of the device model framework schedules the CPU model to perform the 
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next transition of the ideal model. The operations described by these atomic 
exception handler transitions modify the state as described by the software design 
of the hypervisor and the monitor. First, the exception is handled (e.g. assigning 
CPU registers with certain values for forwarding an interrupt to Linux or handling 
a memory mapping request). Then, the CPU model is restored to non-privileged 
mode, from where the execution of Linux can continue. Figure 38 illustrates the 
difference between how the ideal model and the real model describe executions of 
the exception handlers.

The operations performed by each exception handler in the ideal model are 
specified by a mathematical function (as will be seen in subsection 5.3.2.2). To 
further simplify the construction of the proof in step 1, in the ideal model these 
functions read and write the values of the data structures of the software design by 
reading and writing abstract state components, as opposed to reading and writing 
the CPU register and memory state components (which describe the content of the 
physical CPU registers and memory). (This way of storing data structure values in 
the ideal model is described in Subsection 5.3.1.)

To enable the construction of the proof of that the execution of the binary code of 
the hypervisor and the monitor operates according to their formal software design 
(proof step 2), the ideal model specifies the formal software design as being the 
binary interface of the exception handlers. There are two reasons why the ideal 
model specifies the formal software design in this way.

First, the ideal model specifies the formal software design of the hypervisor and 
the monitor to be a set of exception handlers. The reason is that the hypervisor is 
only invoked when exceptions occur and it invokes the monitor, allowing the 
monitor to also be considered as being a part of the exception handlers. This one-
to-one correspondence of when the operations of the formal software design of the 
hypervisor and the monitor are performed in the ideal model, and when the 
operations of the implementations of the exception handlers of the hypervisor and 
the monitor are performed in the real model, is what makes the ideal model usable 
in the application of the simulation proof method. In other words, considering the 
formal software design of the hypervisor and the monitor provided by the ideal 
model as being their formal specification (as motivated in the first step in the proof
list above), this way of specifying their formal specification in the ideal model is 
what makes it possible to prove by means of the simulation proof method and the 
ideal model that their implementation is correct with respect to their formal 
specification. Figure 38 and the second half of its caption elaborates this reasoning.

Second, the ideal model specifies the formal software design to be all exception 
handlers. In an execution trace, irrespectively of whether the execution trace is in 
the ideal model or in the real model, any exception can potentially occur. If an 
exception handler is unspecified by the ideal model, the handling of that exception 
could be considered to perform any operations, potentially producing a state from 
which unsigned Linux code can be executed. In such a case, it would not be 
possible to prove that only signed Linux code is executed on the binary interface 
described by the ideal model (proof step 1). Also, exception handlers that are left 
unspecified by the ideal model could be considered to be allowed to be 
implemented arbitrarily by the hypervisor and the monitor. Implementations of
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Figure 38: An illustration of the difference between how the ideal model and the 
real model describe executions of the exception handlers. In the ideal model, the 
execution of an exception handler is described by one single specification 
transition. NIC transitions can therefore not occur during the execution of an 
exception handler in the ideal model. The specification transitions describing the 
execution of the exception handlers in the ideal model specify how the exception 
handlers implemented by the hypervisor and the monitor shall operate. Hence the 
name specification transition and their label being SPEC. Since some exception 
handlers read or write NIC registers, SPEC transitions may include NIC register 
read or write transitions of the NIC model. In the real model, the execution of an 
exception handler is described by several CPU transitions, possibly intermingled 
with NIC transitions. Since the exception handler execution shown in the lower 
part of the figure in the real model only visits states in which the CPU model is in 
privileged mode and the monitor is executed in non-privileged mode, that 
exception handler execution does not include monitor execution. Proving, by 
means of the simulation proof method and the ideal model, that an implementation 
of an exception handler of the hypervisor and the monitor operates according to its
formal specification, is done by proving that the execution traces in the real model 
of that implementation operate as the execution traces in the ideal model of the 
formal specification of that exception handler. Considering the figure, it must be 
proved that the operations performed by the execution trace in the real model 
between the real states rm+1 and rn, are identical to the operations performed by the
execution trace in the ideal model between the ideal states ij+1 and ik. This involves 
proving that the CPU and RET transitions between rm+1 and rn together operate as 
the SPEC transition ik-1 →SPEC ik, and that the NIC transitions between rm+1 and rn-1 
operate as the NIC transitions between ij+1 and ik-1. For such a proof to succeed, 
the implementation of the exception handler must operate as formally specified by 
the ideal model, and each NIC model automaton must perform the same 
operations in the two sets of transitions. Which operations each NIC model 
automaton performs depend on the scheduling of the device model framework and 
the NIC model and on the non-determinism of the NIC model automata.
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unspecified exception handlers could then enable unsigned Linux code to be 
executed on the binary interface described by the real model and therefore on the 
hardware. Hence, it would be impossible to prove that only signed Linux code is 
executed.

All exception handlers must therefore be specified by the ideal model. The 
software design described in Chapter 3 specifies only the memory mapping and 
NIC register write request handlers, which are only a part of the supervisor call and
data abort exception handlers, respectively. The formal software design that the 
ideal model specifies is therefore not the software design described in Chapter 3, 
but instead an extension of it specifying all exception handlers. Even though each 
exception handler must not enable execution of unsigned Linux code, this thesis 
focuses only on the memory mapping and NIC register write request handlers, 
since they are the most critical parts of the exception handlers for ensuring that 
only signed Linux code is executed.

To enable the construction of the proof of that the executions of the binary code of 
Linux are identical on the binary interfaces described by the ideal model and the 
real model (proof step 3), in the ideal model the CPU model in non-privileged 
mode executes according to the ARMv7 ISA and the NIC model operates 
according to the NIC specification. The binary interfaces of (i) the non-privileged 
CPU execution and (ii) the operation of the NIC are therefore identical in the ideal 
model and the real model, respectively. These are the two similarities between the 
ideal model and the real model. Due to these two similarities, states in the ideal 
model include all state components that are included by states in the real model. 
Hence, the data type of the states in the ideal model (denoted ideal_state) is an 
extension of the data type of the states in the real model (denoted real_state). The 
extension is the state components holding the values of the data structures of the 
formal software design of the hypervisor and the monitor.

To summarize, the ideal model is a transition system that is identical to the 
transition system of the real model, except in two respects. First, in the ideal model
the exception handlers are executed atomically in one transition, as opposed to 
non-atomically in several transitions as is the case in the real model. Second, in the
ideal model the values of all data structures of the exception handlers are stored in 
dedicated state components, as opposed to in the CPU register and memory state 
components as is the case in the real model. It is because of these two differences 
that the ideal model is more abstract than the real model.

Since the proof plan shall be implemented in HOL4, and it is based on the ideal 
model, the ideal model must be implemented in HOL4. Significant parts of that 
implementation can be guided by:

• The HOL4 implementation of the original formal software design of the 
memory mapping request handlers [86], and the formal descriptions in 
Section B.2 of the NIC related extensions of these handlers.

• The pseudocode of the NIC register write request handlers.

• The HOL4 implementations of the device model framework [85], the 
ARMv7 ISA model [84] and the ARMv7 MMU model [86].
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• The pseudocode of the NIC model.

The following subsections formally describe the ideal model similarly to how 
Subsection 5.2.4 formally describes the real model. Subsection 5.3.1 briefly 
describes the data type of the states in the ideal model. Subsection 5.3.2 describes 
the transition rules of the ideal model. Subsection 5.3.3 defines the four tuple 
denoting the ideal model.

5.3.1 States in the Ideal Model

A state in the ideal model has the data type ideal_state, an instance of which is 
called an ideal state. The set of all ideal states is denoted by Sideal. An ideal state i in
Sideal has the shape i = (cpu, memory, nic, spec). The state components cpu, memory
and nic have the same roles as in a real state. The state component spec is the 
abstract state component mentioned above. It has the data type spec_state and 
contains the values of all data structures used in the formal software design 
specified by the ideal model. Since the focus of this thesis is on the memory 
mapping and NIC register write request handlers, this thesis only refers to the data 
structures related to those handlers. (Those data structures are described in Section 
3.4.) For instance, i.spec.tx0_active_queue denotes the value of the variable 
tx0_active_queue in the state i. The relevant parts of ideal_state and spec_state are 
formally defined in Section B.1.

5.3.2 Transition Rules of the Ideal Model

The ideal model has three types of transitions:

• Non-privileged CPU transitions: Each of these transitions describes the 
execution of one CPU instruction in non-privileged mode. Since the 
execution of the operations of the formal specification (software design) of 
the hypervisor and the monitor are described by the specification 
transitions, these transitions describe executions of CPU instructions 
located in the physical memory region allocated to Linux.

• Specification transitions: Each of these transitions describes the atomic 
execution of the operations of the formal specification of the hypervisor 
and the monitor.

• NIC transitions: Is one autonomous transition of the NIC model, and 
possibly one following memory read request reply transition if the 
autonomous transition issued a memory read request.

The transition rules that describe these three types of transitions are described in 
the following three subsections.

5.3.2.1 Transition Rules for Non-Privileged CPU Transitions

The transition rules describing non-privileged CPU transitions in the ideal model 
are nearly identical to the transition rules describing CPU transitions in the real 
model. The difference is that the non-privileged CPU transition rules of the ideal 
model have a conjunct in the premise requiring the CPU model to be in non-
privileged mode in the state from which a described transition starts. This 
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requirement is needed because non-privileged CPU transitions start only from 
states in which the CPU model is in non-privileged mode. In addition, since only 
the specification transitions operate on the spec state component, the spec state 
component is ignored (unmodified) by the non-privileged CPU transition rules.

The transition rules for non-privileged CPU transitions follow:

• No NIC register access:

mode(cpu) = usr  (∧ cpu', memory') = cpu_execute(cpu, memory) ∧
¬nic_access(cpu, memory)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic, spec) →cpu_exec_type(cpu, cpu') (cpu', memory', nic, spec)

• NIC register reads:

pa = cpu_read_nic_register(cpu, memory) ∧
(nic', val) = read_nic_register(nic, pa) ∧

memory' = memory[pa  ↦ val[7:0],
pa + 1  ↦ val[15:8], pa + 2  ↦ val[23:16], pa + 3  ↦ val[31:24]] ∧
mode(cpu) = usr  (∧ cpu', memory'') = cpu_execute(cpu, memory')

––––––––––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic, spec) →CPU (cpu', memory, nic', spec)

• NIC register writes:

pa = cpu_write_nic_register(cpu, memory) ∧
mode(cpu) = usr  (∧ cpu', memory') = cpu_execute(cpu, memory) ∧

val = memory'(pa + 3) :: memory'(pa + 2) ::
memory'(pa + 1) :: memory'(pa) ∧

nic' = write_nic_register(nic, pa, val)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––.

(cpu, memory, nic, spec) →CPU (cpu', memory, nic', spec)

5.3.2.2 Transition Rules for Specification Transitions

Let the following functions denote the formal specification of all exception 
handlers of the hypervisor and the monitor: fiq_interrupt, irq_interrupt, 
supervisor_call, undefined_instruction, prefetch_abort and data_abort.  
(Subsection 2.3.1 describes all exceptions of an ARMv7 CPU, and Subsection 
2.3.4.1 briefly describes how the exceptions are handled by the hypervisor.) The 
argument and return values of these functions have the data type ideal_state.

In Sections 3.5 and 3.6, the functions denoting the memory mapping and NIC 
register write request handlers are shown to operate on ideal states. The reason why
those handler functions are shown to operate on ideal states is because they are 
applied by supervisor_call and data_abort, which operate on ideal states. Also, a 
formal definition of data_abort is partially given in Section B.3. That formal 
definition of data_abort describes how the NIC register write request handlers are 
invoked and operate when the data abort exception handler is invoked because 
Linux attempted to write a NIC register. Furthermore, Section B.5 discusses why 
the transitions specified by the formal software design are atomic.

The transition rules that describe the specification transitions are:
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• Exceptions causing the CPU model to enter fiq, irq, svc or und mode:

mode(cpu) = e ∧
(cpu', memory', nic', spec') = H(e)(cpu, memory, nic, spec)

–––––––––––––––––––––––––––––––––––––––––––––––,
(cpu, memory, nic, spec) →SPEC (cpu', memory', nic', spec')

where e  {∈ fiq, irq, svc, und}, and H(e) is the function that denotes the 
formal specification of the exception handler that handles exception e. For 
instance, H(fiq) = fiq_interrupt.

• Prefetch abort exceptions:

mode(cpu) = abt  ∧ cpu.uregs.r15 = 0xFFFF000C ∧
(cpu', memory', nic', spec') = prefetch_abort(cpu, memory, nic, spec)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic, spec) →SPEC (cpu', memory', nic', spec')

• Data abort exceptions:

mode(cpu) = abt  ∧ cpu.uregs.r15 = 0xFFFF0010 ∧
(cpu', memory', nic', spec') = data_abort(cpu, memory, nic, spec)

–––––––––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic, spec) →SPEC (cpu', memory', nic', spec')

5.3.2.3 Transition Rules for NIC Transitions

The transition rules for NIC transitions are identical to their real model 
correspondence with the difference that the states in the conclusion of the rules are 
extended with the spec state component, which is always unmodified:

• The NIC does not issue a memory access request:

(nic', , ⊥ i) = nic_execute(nic)  ∧ cpu' = cpu[int  ↦ i]
––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic, spec) →NIC (cpu', memory, nic', spec)

• The NIC issues a memory read request:

(nic', (pa, ), ⊥ i) = nic_execute(nic)  ∧ val = memory(pa) ∧
nic'' = memory_byte(nic', (pa, val))  ∧ cpu' = cpu[int  ↦ i]

––––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic, spec) →NIC (cpu', memory, nic'', spec)

• The NIC issues a memory write request:

(nic', (pa, val), i) = nic_execute(nic)  ∧ val ≠ ⊥
memory' = memory[pa  ↦ val]  ∧ cpu' = cpu[int  ↦ i]

––––––––––––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic, spec) →NIC (cpu', memory', nic', spec)

5.3.3 Labeled Transition System of the Ideal Model

The ideal model is denoted similarly to how the real model is denoted. Consider 
the labeled transition system
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LTSideal = (Sideal, ISideal, Lideal, δideal),

where each component is:

• Sideal: The set of all possible instantiations of the data type ideal_state.

• ISideal  {≝ i | SEC(i)  ∧ NIC_INIT(i.nic)  ∧ SPEC_INIT(i.spec)  ∧ LCE(i)}:

The set of initial states in LTSideal. Intuitively, an ideal state is in ISideal if and 
only if: (i) only signed Linux code can be executed from that state, (ii) the 
NIC model and the data structures of the formal software design are 
correctly initialized in that state, and (iii) Linux starts its execution from 
that state. Hence, it is from the initial states of LTSideal that the execution of 
Linux starts, and in which all state components are in a state such that only 
signed Linux code can be executed.

The predicates used in the definition of ISideal have the following meaning 
(this list can also be used as a reference when reading the proof plan):

◦ bool SEC(ideal_state i): A security invariant implying that if an ideal 
state i satisfies it, then (i) no transition from i can falsify SEC, and (ii) if
the CPU executes a Linux instruction from i then that instruction is 
located in a memory block whose signature is in the golden image. SEC
is partly described in the proof plan and is formally defined in 
completion in Appendix E.

◦ bool NIC_INIT(nic_state nic): Is true if and only if nic reflects a 
physical NIC that has just been powered on and then initialized (the 
DMA hardware has been reset and the four HDP and CP registers have 
been zeroed). Hence, nic reflects a physical NIC that is in a secure and 
idle state. The comments in the formal definition of nic_state in Section
C.3 describe which values nic shall have in order to satisfy NIC_INIT.

◦ bool SPEC_INIT(spec_state spec): Is true if and only if the values of 
the state components of spec reflect correctly initialized data structures 
of the formal software design described in Section 3.4. The initial 
values of those data structures are described by the comments in the 
formal definition of spec_state in Section B.1. Those data structure 
values make the formal software design operate as if in a corresponding
hardware state, the physical NIC is in an initialized state and Linux is 
just to start its execution.

◦ bool LCE(ideal_state i): Is true if and only if in the ideal state i, mmu 
maps the value of the program counter as executable to a physical 
address allocated to Linux. (mmu and LCE are defined for ideal states 
as they are defined for real states as described in Subsection 5.2.4.3. 
LCE is formally defined for real states in the Section 6.1.)

SEC, NIC_INIT and SPEC_INIT must be consistent with each other since 
they depend on common variables.

• Lideal  {≝ CPU, EXC, SPEC, NIC}: The transitions in δideal have a label in 
Lideal. Compared to Lreal, RET is replaced by SPEC since only specification 
transitions describe exception returns in the ideal model.
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• δideal  ⊆ Sideal⨯Lideal⨯Sideal: A transition i →l i' is in δideal if and only if i →l i' 
can be generated by a transition rule described in Subsection 5.3.2.

The ideal model is a transition system that shall be defined in HOL4. That 
definition consists of the device model framework instantiated with a HOL4 
implementation of the NIC model, and a modification the CPU model such that it 
describes the operations of the formal specification of all exception handlers. The 
proof plan refers to the ideal model by means of the four tuple IM  (≝ S, IS, δ, Π). 
The four components of IM are defined on top of LTSideal as follows:

• IM.S  ⊆ Sideal: The set of states in the ideal model. An ideal state i is in IM.S 
if and only if there exists an execution trace i0 →l_0 i1 →l_1 … →l_n-1 in, n ≥ 0,
such that:

◦ The execution trace starts in a state in which the NIC model and the 
data structures of the formal software design are initialized and from 
which the execution of signed Linux code starts: i0  ∈ ISideal.

◦ All transitions in the trace are generated by the transition rules 
described in Subsection 5.3.2: 0 ≤ ∀ j < n. ij →l_j ij+1  ∈ δideal.

◦ There exists a state in the trace that is equal to i: 0 ≤ ∃ j ≤ n. ij = i.

• IM.IS  ≝ ISideal: The set of initial states in the ideal model, from which the 
execution of signed Linux code starts.

• IM.δ  ⊆ Sideal⨯Lideal⨯Sideal: The set of transitions in the ideal model. A 
transition i →l i' is in IM.δ if and only if i  ∈ IM.S and there is a transition 
rule in Subsection 5.3.2 that can generate that transition, i →l i'  ∈ δideal.

• IM.Π: The set of execution traces in the ideal model. Let

ν = i0 →l_0 i1 →l_1 … →l_n-1 in, n ≥ 0.

ν  ∈ IM.Π if and only if i0  ∈ IM.IS and each transition in ν has been 
generated by some transition rule described in Subsection 5.3.2:

0 ≤ ∀ j < n. ij →l_j ij+1  ∈ δideal.

Also, the signature function sign is a part of the ideal model. sign specifies how the
signature of the content of a memory block is computed:

wordx sign(word32768 code).

The argument code is a bit string of length 32768, which is equal to 4 kB. The 
return value is the signature of the bit string code, which is a bit string of length x. 
x is left unspecified and shall be replaced by the actual bit length of the signatures. 
For instance, if SHA-256 signatures are used, x is equal to 256. sign specifies the 
implementation of the signature function of the monitor. The monitor invokes the 
implemented signature function to check whether the signature of the content of a 
memory block allocated to Linux is in the golden image. If that is the case, the 
content of the block is considered signed and can be mapped as executable, 
assuming the block is not writable by the physical CPU when executing Linux 
code and not writable by the physical NIC.
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The proof plan reasons about the real model and the ideal model to describe how it 
can be formally proved that only signed Linux code is executed in a system 
consisting of an ARMv7 CPU, a memory, the NIC on BeagleBone Black, the 
hypervisor and the monitor. Since these models and hardware and software 
components have been formalized and explained, it is time to present the proof 
plan.
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6 Proof Plan
This chapter presents a pen-and-paper description, called the proof plan, of how it 
can be formally proved in HOL4 that the binary code of the hypervisor and the 
monitor ensures that only signed Linux code is executed, in a system consisting of 
an ARMv7 CPU, a memory, the NIC on BeagleBone Black, the hypervisor, the 
monitor, and the paravirtualized Linux 3.10 kernel. The proof plan is based on the 
simulation proof method, the real model (described in Section 5.2), the ideal model
(described in Section 5.3), and the software design of the hypervisor and the 
monitor (partly described in Sections 3.4, 3.5 and 3.6).

Having a plan for how to implement a formal proof in a theorem prover is 
necessary before the formal proof is implemented. Otherwise, it is easy for the 
prover to get lost in all details, and that the formal proof gets unstructured and 
difficult to understand because the theorem prover gets a significant impact on the 
proving procedure. Such impacts can cause the prover to perform significant 
amounts of unnecessary work.

The proof plan is structured by means of nine top-level lemmas (Lemma I-IX). The
proof plan describes how these lemmas can be applied to prove that only signed 
Linux code is executed, and how the top-level lemmas can be proved. Some of the 
top-level lemmas are based on sub-level lemmas, which are described similarly, 
but more informally, in Appendix F.

This chapter is structured as follows. Section 6.1 describes definitions of constants 
and functions used in the proof plan (see Section 2.1 for a description of notation). 
Section 6.2 formally defines the goal of that only signed Linux code is executed in 
terms of the four tuple RM, denoting the real model. In addition, Section 6.2 
defines all top-level lemmas and gives a high-level view of how they can be 
applied to prove the goal.

The following three sections describe the details of the proof plan. Section 6.3 
describes how it can be proved that only signed Linux code is executed on the 
binary interface described by the ideal model, IM. (The second paragraph in 
Section 5.3 explains what the binary interface is in this context.) This includes a 
description of how it can be proved that the formal software design of the 
hypervisor and the monitor is correct. (This formal software design is an extension 
of the software design described in Sections 3.4, 3.5 and 3.6, and which describes 
all exception handlers of the hypervisor and the monitor; see also Section 5.3 for 
an explanation of this complete formal software design). A correctness proof of the
formal software design allows the formal software design to not only be considered
as a description of the exception handlers of the hypervisor and the monitor, but 
also as a formal specification for the binary code implementation of the hypervisor 
and the monitor.

Section 6.4 describes how it can be proved that the executions of the binary code 
of Linux on the binary interfaces described by the ideal model and the real model 
are identical. This includes a description of how it can be proved that the 
executions of the binary code implementation of the hypervisor and the monitor 
operate according to the formal specification provided by the ideal model. (In the 
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beginning of Section 5.3, there is a numbered list of three proof steps. Referring to 
that numbered list, Section 6.3 describes proof step 1, and Section 6.4 describes 
proof step 3, which includes proof step 2.)

Section 6.5 finishes the proof plan by describing the final three top-level lemmas 
(Lemma VII-IX) that are applied to prove the goal, and derived from the first six 
top-level lemmas described in Sections 6.3 (Lemma I-III) and 6.4 (Lemma IV-VI). 
That is, these final three top-level lemmas are used to transfer the property of only 
signed Linux code execution from the ideal model to the real model, thereby 
proving the goal.

Section 6.6 discusses the correctness of the proof plan and whether it is practically 
feasible to implement the proof plan in HOL4. A summary of the proof plan is also 
presented.

In contrast to Chapter 5, in this chapter, no particular distinction is made between 
the hardware and the corresponding models, unless a description explicitly refers 
to a model. Formulas formulated in terms of functions referring to models are 
intended to describe a property involving the hardware, and in such cases, the 
reader can think about the hardware instead of the models.

6.1 Definitions of Constants and Functions
The following list defines the constants and functions used in the proof plan (this 
list can also be used as a reference when reading this chapter):

• LINUX_MEM: The set of all bytewise memory addresses of the physical 
memory region allocated to Linux.

• word32 memory_word(word32 → word8 memory, word32 pa) ≝
return memory(pa + 3) :: memory(pa + 2) ::

memory(pa + 1) :: memory(pa)

memory_word returns a 32 bit word located at physical address pa in the 
memory state memory in little-endian order.

• word32768 content(word32 → word8 memory, word20 bl) ≝
return memory(bl :: 012 + 4095) :: memory(bl :: 012 + 4094) :: …

… :: memory(bl :: 012)

content returns the 32768 bits (which is 4 kB and the size of one block) 
contained in the memory block with index bl, where the memory is in the 
state memory. '::' and 012 denotes concatenation and 12 consecutive zeros, 
respectively.

• <word32768> linux_code(real_state r) ≝
{code | ∃va, pa  <word32>. ∈ mmu(r, PL0, va, ex) = pa ∧

pa  ∈ LINUX_MEM ∧
code = content(r.memory, pa[31:12]) ∧
r.cpu.cp15.DACR[5:4] = 0b01}

linux_code returns the set of the contents of all blocks allocated to Linux 
and that are mapped as executable in non-privileged mode, in the real state 
r. (mmu is explained in Subsection 5.2.4.3.)
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• bool LCE(real_state r) ≝
∃pa  ∈ LINUX_MEM. 

mmu(r, PL0, r.cpu.uregs.r15, ex) = pa ∨
mmu(r, PL1, r.cpu.uregs.r15, ex) = pa

LCE (Linux Code is Executed) returns true if and only if the next CPU 
instruction execution will succeed (takes effect without raising an 
exception, except for supervisor call instructions) and the executed 
instruction is located in the memory region allocated to Linux. That is, the 
virtual address contained in the program counter is mapped as executable to
a physical address allocated to Linux. Intuitively, r is a state from which 
Linux code can be executed.

• bool CPUL(real_state r)  ≝ mode(r) = usr  ∧ r.cpu.cp15.DACR[5:4] = 0b01

CPUL (CPU configured to execute Linux) is true if and only if the CPU 
(including the MMU whose operation is affected by DACR) is configured 
to execute Linux. The CPU is configured to execute Linux if and only if the
CPU is in non-privileged mode, and the DACR register field dedicated to 
the physical memory region allocated to Linux (bits five and four of 
DACR) is set such that, the executions of Linux access Linux memory 
according to how they have configured the page tables. Subsection 2.3.1 
explains DACR. The last paragraph in Subsection 2.3.4.1 explains how 
DACR is used by the hypervisor. Subsection 5.2.4.2.1 explains mode.

The following explains the meanings of LCE and CPUL when applied to a 
real state r:

◦ LCE(r) = false and CPUL(r) = false: The MMU does not map the 
virtual address in the program counter as executable to a physical 
address allocated to Linux, and the CPU is not configured to execute 
Linux. This means that the configurations of the page tables and the 
MMU are consistent with the configuration of the CPU to not execute 
Linux.

◦ LCE(r) = false and CPUL(r) = true: The MMU does not map the virtual
address in the program counter as executable to a physical address 
allocated to Linux, and the CPU is configured to execute Linux. A state 
r can satisfy this condition when, for instance, the CPU has executed an
instruction that causes the program counter to be set to a virtual address 
that is not mapped as executable to a physical address allocated to 
Linux. Still, the configurations of the page tables and the MMU are 
consistent with the configuration of the CPU to execute Linux.

◦ LCE(r) = true and CPUL(r) = false: The MMU maps the virtual address
in the program counter as executable to a physical address allocated to 
Linux, and the CPU is not configured to execute Linux. This means that
the configurations of the page tables and the MMU are not consistent 
with the configuration of the CPU to not execute Linux. In other words,
the execution of the hypervisor has resumed the execution of Linux 
incorrectly. If the CPU is in privileged mode, this means that Linux has 
control of the system, which must not occur.
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◦ LCE(r) = true and CPUL(r) = true: The MMU maps the virtual address 
in the program counter as executable to a physical address allocated to 
Linux, and the CPU is configured to execute Linux. This means that the
configurations of the page tables and the MMU are consistent with the 
configuration of the CPU to execute Linux.

Hence, what is wanted is that LCE(r)  ⇒ CPUL(r) holds for all r  ∈ RM.S. 
How this formula can be proved is described in Subsection 6.5.1.

• spec_state hvm_to_spec(word32 → word8 memory)

hvm_to_spec takes a state of the memory as argument and returns a 
spec_state instance. That spec_state instance contains the values of the data 
structures of the formal software design, implemented in the hypervisor and
monitor and stored in their memory regions. The following examples 
illustrate the meaning of hvm_to_spec. Let s = hvm_to_spec(memory), then:

◦ s.tx0_active_queue: Is equal to the 32-bit value stored in the hypervisor 
memory region that contains the value of the variable tx0_active_queue 
of the formal software design. For instance, if tx0_active_queue is 
located at physical address 0x4 and memory_word(memory, 0x4) = 0x2,
then s.tx0_active_queue = 0x2.

◦ s.ρNIC(0x3): Is equal to the 32-bit value stored in the hypervisor memory
region that contains the value of the data structure ρNIC indexed by 0x3. 
For instance, if the entry 0x3 of ρNIC is stored at physical address 0x8, 
and memory_word(memory, 0x8) = 0xA, then s.ρNIC(0x3) = 0xA.

◦ s.GI: The golden image containing the set of bit strings in the monitor 
memory that is used by the monitor to decide whether the signature of a
block is valid. For instance, if the golden image stored in the monitor 
memory contains two signatures, each of 32 bits, stored at 0x0 and 0x4,

memory_word(memory, 0x0) = 0x76543210, and

memory_word(memory, 0x4) = 0x01234567,

then s.GI = {0x76543210, 0x01234567}.

Since the golden image is a part of the state it could potentially change 
during execution. In this proof plan, it is assumed that the golden image
shall be constant. It is therefore necessary to prove a lemma stating that 
the golden image of the monitor is constant. No such lemma is included
in the proof plan. However, as is mentioned in Section 8.1, the current 
implementation of the hypervisor and the monitor allows updates of the 
golden image. Such an implementation requires a different lemma 
stating that all modifications of the golden image are due to secure 
updates of the golden image.

• bool LINUX_CODE_SIGNED(real_state r) ≝
∀code  <word32768>.∈

code  ∈ linux_code(r)  ⇒ sign(code)  ∈ hvm_to_spec(r.memory).GI
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If a memory block is mapped as executable in non-privileged mode and 
allocated to Linux, then the contents of that block are signed. (sign is 
explained in Subsection 5.3.3.)

• bool EXEC_SIGNED_LINUX_CODE(real_state r) ≝
LCE(r)  ⇒ CPUL(r)  ∧ LINUX_CODE_SIGNED(r)

If the next CPU instruction execution succeeds and that instruction is 
located in Linux memory, then the CPU is configured to execute Linux, and
that instruction is located in a memory block whose contents have a 
signature in the golden image. Intuitively, if the CPU executes Linux code, 
then that Linux code is signed.

All of these functions defined on real states are also defined similarly for ideal 
states, except for hvm_to_spec (which does not need to be defined for ideal states 
since the spec_state instance of an ideal state i is simply accessed as i.spec). The 
only exception is LINUX_CODE_SIGNED, which for ideal states is defined as:

bool LINUX_CODE_SIGNED(ideal_state i) ≝
∀code  <word32768>. ∈ code  ∈ linux_code(i)  ⇒ sign(code)  ∈ i.spec.GI.

6.2 Definition of Goal and Structure of Proof Plan
This section formally defines the goal, and describes the top-level lemmas and how
they are applied to prove the goal.

6.2.1 Formal Definition of Goal

The purpose of the proof plan is to describe how Theorem I can be formally 
proved:

Theorem I. ∀r  ∈ RM.S.
EXEC_SIGNED_LINUX_CODE(r)  ¬∧ r.nic.dead.

For each state that the hardware can reach during a system execution, if Linux code
can be executed from that state, then in that state, the CPU is configured to execute
Linux and that Linux code is signed, and in addition, the NIC is in a defined state. 
Apart from the obvious that executed Linux code must be signed, the CPU must 
always be configured to execute Linux (in non-privileged mode) when it is 
executing Linux in order for the hypervisor to control the system. The NIC must 
always be in a defined state since otherwise, it is unknown which operations the 
NIC performs. If the NIC performs certain memory writes, those writes could lead 
to that the CPU executes unsigned Linux code or that Linux gets in control of the 
system. Theorem I is what shall be proved in HOL4 by means of the real model.

6.2.2 Structure of Proof Plan

This subsection introduces the top-level lemmas and provides a birds-eye-view of 
the proof plan by showing how these lemmas are applied to prove Theorem I. The 
proof plan consists of four parts. Part 1 is concerned with proving that in the ideal 
model, the executed binary code of Linux is located in blocks whose contents are 
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signed. Part 2 is concerned with proving that the executions of the binary code of 
Linux is identical on the binary interfaces described by the ideal model and the real
model. This proof is constructed by applying the simulation proof method on the 
ideal model and the real model. Part 3 is concerned with proving the final three 
top-level lemmas that are used to transfer the property of only signed Linux code 
execution from the ideal model to the real model, and which are derived from the 
first six top-level lemmas proved in parts 2 and 3. Part 4 is concerned with proving 
Theorem I by applying the final three top-level lemmas proved in Part 3. A bird-
eye-view of these four parts is given by the following four subsections.

6.2.2.1 Part 1: Formal Software Design Is Correct

The formal software design of the hypervisor and the monitor is correct if, in the 
ideal model, the executed binary code of Linux is signed. To prove that the 
executed binary code of Linux is signed, the following four steps can be taken.

First, a security invariant, SEC, on ideal states is defined. The purpose of SEC is 
twofold:

• Imply Theorem I for ideal states: If an ideal state satisfies SEC, then for 
that state (i) if Linux is executed, then the CPU is configured to execute 
Linux and signed code is executed, and (ii) the NIC is in a defined state.

• Restrict a satisfying state such that no transition from that state can falsify 
SEC.

Second, the first purpose of SEC is proved, giving Lemma I:

Lemma I. ∀i  ∈ Sideal.
SEC(i)
⇒
EXEC_SIGNED_LINUX_CODE(i)  ¬∧ i.nic.dead.

Third, all initial states of the ideal model are defined to satisfy SEC:

∀i  ∈ IM.IS. SEC(i).

This is done when the ideal model is defined (see the definitions of IM.IS and ISideal

in Subsection 5.3.3).

Fourth, the second purpose of SEC is proved by proving that SEC is preserved by:

• CPU transitions starting from states in which the CPU is in non-privileged 
mode: These transitions describe executions of CPU instructions located in
Linux memory. Since Linux is untrusted, any CPU instruction can 
potentially be executed, and therefore all CPU instructions must be 
considered.

• Specification transitions starting from states in which the CPU is in 
privileged mode: These transitions describe the operations of the formal 
software design of the hypervisor and the monitor. In contrast to the 
previous case, these operations are known.

• NIC transitions: These transitions describe the operations of the NIC.
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These three properties are possible to prove because of the restrictions SEC impose
on the states satisfying SEC. The three proofs imply that SEC is preserved by all 
transitions in the ideal model (cf. the upper part of Figure 12 in Subsection 
2.3.4.2):

∀i →l i'  ∈ IM.δ. SEC(i)  ⇒ SEC(i').

Steps three and four imply that all states in the ideal model satisfy SEC, giving 
Lemma II:

Lemma II. ∀i  ∈ IM.S. SEC(i).

Lemma I and Lemma II imply Lemma III:

Lemma III. ∀i  ∈ IM.S.
EXEC_SIGNED_LINUX_CODE(i)  ¬∧ i.nic.dead.

Lemma III states that for all states in the ideal model, only signed Linux code can 
be executed and the NIC is in a defined state. That is, the formal software design of
the hypervisor and the monitor is correct. As motivated in Section 5.3 and 
mentioned in the opening of this chapter, once the formal software design is proved
to be correct, the formal software design can be considered as the formal 
specification of the implementation of the hypervisor and the monitor. As can be 
seen, Lemma III is Theorem I but with respect to the ideal model instead of the real
model. It is the property of Lemma III that shall be transferred to the real model by
means of Lemma VII, VIII and IX, proved in part 3. To be able to transfer the 
property of Lemma III, it must first be proved that the executions of the binary 
code of Linux are identical in the ideal model and in the real model. This is done in
part 2 by means of the simulation proof method.

6.2.2.2 Part 2: Implementation of Hypervisor and Monitor Is 
Correct

The implementation of the formal software design of the hypervisor and the 
monitor is correct, if the executions of the binary code of Linux are identical in the 
ideal model and in the real model (since only signed Linux code is executed in the 
ideal model). To prove that the executions of the binary code of Linux are identical
in the ideal model and in the real model, the following four steps can be taken.

First, to prove that the executions of the binary code of Linux are identical in the 
ideal model and in the real model by means of the simulation proof method, a 
simulation relation R  ⊆ Sreal  ⨯ Sideal is defined. (r, i)  ∈ R is written as r R i. For R to
be useful, for r  ∈ RM.S and i  ∈ IM.S, r R i must imply the following three 
properties:

• Lemma III can be transferred from i to r.

• For each transition starting from r, and describing an execution of a CPU 
instruction located in Linux memory or a fine-grained NIC operation, there 
exists a transition starting from i, such that the two transitions describe 
identical operations.
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• For each sequence of transitions starting from r, and describing an 
execution of an exception handler of the hypervisor and the monitor, there 
exists a sequence of transitions starting from i, such that the two complete 
transition sequences describe identical operations.

For r R i to imply these three properties, R must require equality between the state 
components of r and i that affect either Lemma III or the set of possible transitions 
starting from r or i (the state components that the transition rules in Subsection 
5.3.2 depend on):

• State components affecting the execution of Linux: The CPU register state
components, and the memory state component entries corresponding to 
the memory region allocated to Linux. These CPU and memory state 
components exist both in real states and in ideal states.

• State components affecting the execution of the hypervisor and the 
monitor and the operations specified by the formal specification (software 
design): The memory state component entries corresponding to the 
memory regions allocated to the hypervisor and the monitor of the real 
state, and the spec state component of the ideal state.

• State components affecting the operation of the NIC: The nic state 
component of the real state and the ideal state.

Figure 39 gives a graphical illustration of which state components of a real state 
and an ideal state that must be equal in order for the two states to be related by R.  
A formal definition of R is given in Subsection 6.4.1.

Second, in order for the application of the simulation proof method on RM, IM 
with respect to R, to enable the transfer of Lemma III from a real state to an ideal 
state, two additional labeled transition systems, the real Linux model and the ideal 
Linux model, are defined in terms of the real model and the ideal model, 
respectively. The real Linux model and the ideal Linux model are denoted by the 
four tuples RLM and ILM, respectively:

• RLM = ({r | r  ∈ RM.S  ∧ CPUL(r)}, RM.IS, δ, Π).

• ILM = ({i | i  ∈ IM.S  ∧ CPUL(i)}, IM.IS, δ, Π).

Each component of RLM and ILM is (informally) defined in terms of RM and IM 
as follows:

• The sets of states, RLM.S and ILM.S, contain all and only the states in 
RM.S and IM.S, respectively, in which the CPU is configured to execute 
Linux, as determined by CPUL.

• The sets of initial states, RLM.IS and ILM.IS, are equal to the sets of initial 
states in RM.IS and IM.IS, respectively.

• The sets of transitions, RLM.δ and ILM.δ, contain a transition from a state s
to a state s', written as s ⇝real s' and s ⇝ideal s' (the labels of all transitions in 
RLM.δ and ILM.δ are real and ideal), if and only if there exists an 
execution trace in RM.Π and IM.Π, respectively, such that in that execution 
trace there either exists:

135



◦ a transition from s to s′, describing the execution of a CPU instruction 
located in Linux memory,

◦ a sequence of transitions starting from s and ending in s′, consisting of 
(i) transitions describing an execution of an exception handler, and (ii) 
the longest consecutive sequence of NIC transitions immediately 
following the exception handler execution transitions, or

◦ a NIC transition from s to s′, not a occurring in a sequence of transitions
of the type described in the previous item bullet.
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Figure 39: The equality requirements on a real state and an ideal state in order for
them to be related by R. A real state has three state components, as shown on the 
left (and in Figure 36): CPU registers, memory, and NIC. An ideal state has four 
state components, as shown on the right (and in Subsection 5.3.1), extending a real
state with the spec state component holding the values of the data structures of the 
formal software design (denoted FSD). For a real state and an ideal state to be 
related by R, the following equalities must hold between the real state and the 
ideal state: (i) the CPU state components, (ii) the Linux memory entries of the 
memory state components, (iii) the NIC state components, (iv) the hypervisor and 
monitor memory entries corresponding to where the code of the hypervisor and the
monitor is stored, and (v) the values of the data structures of the hypervisor and 
the monitor stored in the hypervisor and monitor memory entries of the memory 
state component of the real state, must be equal to the values of the corresponding 
data structures stored in the spec state component of the ideal state. The 
hypervisor and monitor memory entries of the memory state component of the 
ideal state do not affect transitions in the ideal model. The proof of Lemma V relies
on sub-level lemmas that depend on the equality of the hypervisor and monitor 
code. The hypervisor and monitor memory entries corresponding to where the data
of the hypervisor and the monitor are stored are irrelevant in the ideal model.

Linux

Real state Ideal state

Monitor data

Hypervisor code

CPU state

Data structure
state of FSD

CPU state=

=

=

Memory state Memory state

R

Hypervisor data
Monitor code =

=

NIC state NIC state

Linux
Unused

Hypervisor code
Unused

Monitor code

=



137

Figure 40: The relationship between RLM and RM, and ILM and IM. The upper 
part of the figure shows sequences of transitions in RLM.δ and RM.δ, while the 
lower part of the figure shows sequences of transitions in ILM.Π and IM.Π. White 
states satisfy CPUL and shaded states do not satisfy CPUL. RLM.S and ILM.S 
include only the white states, while RM.S and IM.S include all states. RLM.δ and 
ILM.δ include only transitions with the label real or ideal, respectively, while RM.δ
and IM.δ include transitions with the other labels. A transition with the label 
CPU NIC is either a CPU transition or a NIC transition. The transitions from r∨ a-1 
to ra and from rc+1 to rc+2 are both in RM.δ and RLM.δ, but in RLM.δ they are 
denoted by ra-1 ⇝real ra and rc+1 ⇝real rc+2, respectively. Similarly for the transitions 
from ia′-1 to ia′, and from ic′+1 to ic′+2, denoted by ia′-1 ⇝ideal ia′ and ic′+1 ⇝ideal ic′+2 in 
ILM.δ, respectively. CPU transitions describing the execution of Linux can only 
occur from white states. The CPU transitions between ra+1 and rb and between 
rb+g+1 and rc describe executions of the hypervisor, which are possibly interleaved 
with NIC transitions. The CPU transitions between rb to rb+g+1 describe an 
execution of the monitor, also possibly interleaved with NIC transitions. With 
respect to an execution trace in RM.Π or IM.Π, what RLM and ILM exclude but 
what RM and IM include are (i) the states and transitions that occur in transition 
sequences describing executions of exception handlers, and (ii) the NIC transitions
immediately following transition sequences describing executions of exception 
handlers. ra-1 ⇝real ra is either a Linux transition or a NIC transition. ra ⇝real rc and 
ra ⇝real rc+1 are exception handler transitions, defined in terms of two different 
execution traces in RM.Π (in the execution trace defining ra ⇝real rc, rc is followed 
by a CPU transition). There is no transition from rc to rc+1 in RLM.δ because it is a 
NIC transition following a transition sequence of an exception handler execution.

ia′

i
a′+1

i
c′-1

ic′

...

ic′+1ia′-1

CPU NIC∨ NICEXC
NIC

SPEC

RLM and RM

ILM and IM

r
a

ra+1 rc-1

r
c r

c+1
r

a-1

CPU NIC∨ NICEXC RET

rb rb+g
...

CPU NIC∨

... ...

CPU NIC∨ CPU NIC∨

EXCRET

real

real

real

ideal ideal ideal
ic′+2

r
c+2

real

CPU

CPU

ideal



This gives three types of transitions in RLM.δ and ILM.δ: Linux transitions,
exception handler transitions and NIC transitions, respectively. An intuitive 
explanation of why certain transitions and states in RM and IM are 
excluded from RLM and ILM, respectively, is given below in this 
subsection and in Subsection 6.4.2.

• The sets of execution traces, RLM.Π and ILM.Π, contain an execution trace
if and only if that execution trace starts from an initial state in RLM.IS or 
ILM.S and consists of a sequence of transitions in RLM.δ or ILM.δ of 
arbitrary length, respectively.

Figure 40 illustrates the relationship between RLM and RM, and ILM and IM. 
Previously, it was stated that the simulation proof method was applied on RM and 
IM. Actually, the simulation proof method is applied on RLM and ILM, but which 
are defined in terms of RM and IM, respectively. RLM and ILM are formally 
defined in Subsection 6.4.2.

Third, it is proved that each initial state in RLM.IS, is related by R to some initial 
state in ILM.IS, giving Lemma IV:

Lemma IV. ∀r  ∈ RLM.IS. ∃i  ∈ ILM.IS. r R i.

Fourth, the simulation proof method is applied to prove that each transition in 
RLM.δ has a matching transition in ILM.δ with respect to R, giving Lemma V:

Lemma V. ∀r, r′  ∈ RLM.S, i  ∈ ILM.S.
r ⇝real r  ′  ∧ r R i  ⇒ ∃i′  ∈ ILM.S. i ⇝ideal i′  ∧ r′ R i′.

Figure 41 gives a graphical illustration of Lemma V. The meaning of Lemma V is 
that, for each real state in RM.S, from which Linux code can be executed (CPUL 
holds), there exists an ideal state in IM.S, such that (i) the state of Linux is identical
in the two states, and (ii) the operations performed from the two states are identical
and affect the execution of Linux identically (with respect to the binary interface: 
execution of a Linux instruction, execution of an exception handler, or an 
execution step of the NIC).

Lemma V can be proved by proving it separately for the three types of transitions 
in RLM.δ (Linux, exception handler and NIC transitions). Lemma V can be proved 
for Linux transitions (rc ⇝real rc+1 in Figure 41) since R requires the CPU state 
components, the Linux memory region entries of the memory state components, 
and the NIC state components to be equal (recall that the CPU is allowed to read 
NIC registers although the CPU is executing Linux). This means that the CPU will 
execute identical CPU instructions with identical operands from related states. The 
CPU will therefore perform identical operations from related states when executing
Linux.

Proving Lemma V for exception handler transitions (ra ⇝real rc in Figure 41) is 
more problematic. The reason is that in RM.Π, NIC transitions can occur between 
CPU transitions (including exception transitions occurring due to monitor 
executions and exception return transitions, having labels EXC and RET, 
respectively) describing executions of exception handlers, while in IM.Π, this is 
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not the case since the operations of the exception handlers are specified by atomic 
specification transitions. The problem is to prove that the CPU transitions in RM.Π 
combined (between ra and rc in the upper sub-execution trace in Figure 41) 
describe identical operations as described by the corresponding specification 
transition in IM.Π (ic′-1 →SPEC ic′). The same problem applies to the interleaved NIC 
transitions in RM.Π (between ra and rc in the upper sub-execution trace in Figure 
41) and the corresponding NIC transitions in IM.Π (between ia′ and ic′). These two 
problems can be solved by finding another scheduling of CPU and NIC transitions 
in RM.Π such that:
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Figure 41: The main components involved in Lemma V. The upper half of the 
figure shows one sub-execution trace in RLM.Π and two sub-execution traces in 
RM.Π. The lower part of the figure shows one sub-execution trace in ILM.Π and 
one sub-execution trace in IM.Π. States related by R are connected by dashed lines
having the label R. For each of the transitions ra-1 ⇝real ra, ra ⇝real rc and rc ⇝real rc+1

there exists a matching transition ia′-1 ⇝ideal ia′, ia′ ⇝ideal ic′ and ic′ ⇝ideal ic′+1 with 
respect to R, respectively. Since ra-1 R ia′-1 holds, this implies that ra R ia′, rc R ic′ and 
rc+1 R ic′+1 hold.
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• the CPU transitions occur in consecutive sequence (between r′j and rc) with
the NIC transitions occurring before or after those CPU transitions 
(between r′a+1 and r′j), and

• the rescheduled sub-execution trace (between ra and rc in the lower sub-
execution trace in Figure 41) describe identical operations as described by 
the original sub-execution trace (between ra and rc in the upper sub-
execution trace in Figure 41).

Important is that the original exception handler sub-execution trace and the 
rescheduled one start from the same state and end in the same state (ra and rc, 
respectively).

Lemma V can then be proved for exception handler transitions in four steps by 
traversing transition by transition in turn and order in the rescheduled sub-
execution trace (between ra and rc in the lower sub-execution trace in Figure 41) 
and the corresponding sub-execution trace in IM.Π (between ia′ and ic′). First, it is 
proved that if a CPU exception occurs from a real state (ra →EXC r′a+1), and that real
state is related by R to an ideal state in IM.S (ia′), then the same CPU exception 
occurs from the ideal state (ia′ →EXC ia′+1) and the same operations are performed by 
the CPU exceptions. Second, it is proved that identical operations are described by 
each pair of NIC transitions in the rescheduled sub-execution trace and in the 
corresponding sub-execution trace in IM.Π before the CPU and specification 
transitions (between r′a+1 and r′j, and between ia′+1 and ic′-1), respectively. Third, it is 
proved that all CPU transitions in the rescheduled sub-execution trace combined 
(between r′j and rc) describe identical operations as described by the corresponding 
specification transition in the sub-execution trace in IM.Π (ic′-1 →SPEC ic′). Fourth, if 
NIC transitions occur after the CPU transitions in the rescheduled trace (not shown
in Figure 41), then the first step is repeated. These four steps imply that R is 
preserved by: initial exception transitions, NIC transitions, and by corresponding 
CPU and specification transitions. The four steps are described formally in 
Subsection 6.4.4.3.

Lemma V can be proved for exception handler transitions in RLM.δ since R 
requires equality between (i) the Linux states, (ii) the hypervisor and monitor 
memory entries in the real state, and the spec state component and hypervisor and 
monitor code memory entries in the ideal state, and (iii) the nic state components. 
The first equality requirement implies identical operations of initial exceptions. 
The second and third equality requirements imply identical operations of exception
handlers executions (which might access NIC registers potentially causing 
exception handler executions and NIC operations to affect each other) and the NIC.

Lemma V can be proved for NIC transitions (ra-1 ⇝real ra in Figure 41) since R 
requires the nic state components to be equal. The operations described by NIC 
transitions depend only on the state of the NIC. The NIC performs therefore 
identical operations from related states.

It can now be understood why the simulation proof method is applied on RLM and 
ILM and not directly on RM and IM. It is not possible to prove Lemma V with 
respect to RM.S and IM.S. The reason is that, in general, intermediate states in 
executions of exception handlers in RM.Π are not related to any state in RM.S due 
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to the atomic execution of exception handlers in IM.Π (this is further explained in 
Subsection 6.4.2). Also, to prove that only signed Linux code is executed, it is 
sufficient to only include states from which Linux code can be executed. RLM.S 
and ILM.S therefore only include states in RM.S and IM.S, respectively, from 
which Linux code can be executed (states satisfying CPUL). Similarly, RLM.δ and 
ILM.δ therefore only include transitions between such states.

Hence, the execution traces in RLM.Π and ILM.Π include and describe the same 
states and operations as included and described by the execution traces in RM.Π 
and IM.Π, respectively, except in two respects. First, intermediate states in 
exception handler executions are omitted from RM.S and IM.S. Second, individual 
transitions occurring during exception handler executions and NIC transitions 
occurring immediately after exception handler executions are omitted from RLM.Π
and ILM.Π. That is, RLM.Π and ILM.Π describe execution traces in which 
executions of exception handlers are atomic. Considering the execution of Linux, 
these two omissions from RLM and ILM of states and transitions with respect to 
RM and IM, respectively, do not omit any states from which Linux can be 
executed, nor the granularity of the operations affecting the execution of Linux. 
RLM and ILM can therefore be used to prove that the binary executions of Linux in
RM and IM are equal. In other words, RLM and ILM can be used to prove that the 
implementation of the hypervisor and the monitor is correct.

Lemma IV and Lemma V imply that each state in RLM.S is related by R to some 
state in ILM.S, giving Lemma VI:

Lemma VI. ∀r  ∈ RLM.S. ∃i  ∈ ILM.S. r R i.

6.2.2.3 Part 3: Three Lemmas Transferring Lemma III to RM

The final three top-level lemmas, depending on the first six top-level lemmas, are 
used to transfer Lemma III from IM to RM.

First, Lemma VII states two properties with respect to RM:

• If the CPU is executing Linux, then the CPU is configured to execute 
Linux.

• If the CPU is not configured to execute Linux, then the NIC is in a defined 
state.

Lemma VII. ∀r  ∈ RM.S.
[LCE(r)  ⇒ CPUL(r)]  [¬∧ CPUL(r)  ¬⇒ r.nic.dead].

As mentioned in Subsection 2.1.1, brackets are used as ordinary parenthesis to ease
the interpretation of their scope.

Second, Lemma VIII states that for a real state in RM.S, if the CPU is configured to
execute Linux, then that real state is related by R to some ideal state in IM.S:

Lemma VIII. ∀r  ∈ RM.S. CPUL(r)  ⇒ ∃i  ∈ IM.S. r R i.
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Third, Lemma IX states that if a state in RM.S is related by R to some state in IM.S,
then, with respect to that state in RM.S, if the CPU will execute a Linux instruction,
then that Linux instruction is located in a signed code block, and the NIC is in a 
defined state:

Lemma IX. ∀r  ∈ RM.S, i  ∈ IM.S.
r R i
⇒
[LCE(r)  ⇒ LINUX_CODE_SIGNED(r)] ∧
¬r.nic.dead.

6.2.2.4 Part 4: Proof of Theorem I

Proving Theorem I,

∀r  ∈ RM.S. EXEC_SIGNED_LINUX_CODE(r)  ¬∧ r.nic.dead,

is done in two steps by proving the two conjuncts separately. Consider first 
EXEC_SIGNED_LINUX_CODE(r) which is defined to be equal to

LCE(r)  ⇒ CPUL(r)  ∧ LINUX_CODE_SIGNED(r).

Assume LCE(r) holds for some r  ∈ RM.S. Applying Lemma VII, VIII and IX in 
sequence gives:

1. By Lemma VII, CPUL(r) holds.

2. By Lemma VIII, ∃i  ∈ IM.S. r R i holds.

3. By Lemma IX, LCE(r)  ⇒ LINUX_CODE_SIGNED(r) holds.

Since LCE(r) is assumed, LINUX_CODE_SIGNED(r) holds. Hence,

CPUL(r)  ∧ LINUX_CODE_SIGNED(r)

holds.

Consider the second conjunct of Theorem I, ¬r.nic.dead. Lemma VII gives

¬CPUL(r)  ¬⇒ r.nic.dead,

and Lemma VIII and IX give

CPUL(r)  ¬⇒ r.nic.dead.

Irrespectively of whether r satisfies CPUL or not, ¬r.nic.dead holds.

Since r  ∈ RM.S was arbitrarily chosen,

EXEC_SIGNED_LINUX_CODE(r)  ¬∧ r.nic.dead

holds for all states in RM.S.

Figure 42 gives an overview of the proof plan by showing the dependences 
between Theorem I, the top-level lemmas, the sub-level lemmas, and some 
assumptions made in the proof plan. The first three parts of the proof plan, 
sketched in the previous Subsections 6.2.2.1 through 6.2.2.3, are described in 
deeper detail in the following three sections. Those following three sections 
describe how the top-level lemmas can be proved.
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6.3 Lemma III: Formal Software Design Is Correct
The purpose of this section is to describe the details of the first part of the proof 
plan and how Lemma III can be proved. The presentation of this section follows 
the steps outlined in Subsection 6.2.2.1, except for the omission of step three of 
defining IM.IS such that all ideal states in IM.IS satisfies the security invariant SEC
which is done in Section 5.3.3. Subsection 6.3.1 describes the parts of SEC that are
involved in reasonings presented later in this chapter. Subsection 6.3.2 is devoted 
to Lemma I where it is described how it can be proved that SEC implies that only 
Linux code is executed from the ideal state satisfying SEC and that the NIC state is
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Figure 42: The dependences between Theorem I, the top-level lemmas, the sub-
level lemmas, and the assumptions made in the proof plan. The boxes with roman 
numerals correspond to the top-level lemmas with the same numerals. The other 
boxes, except the one with the label Theorem I, correspond to the sub-level lemmas
or the assumptions with the same name. A statement depends on another statement
if the box of the former statement is placed above the box of the latter statement 
and the boxes are connected by a line. For instance, Lemma VI depends on Lemma
IV and V, and Lemma IV depends on (the sub-level lemma) RM and IM Initially 
Related Lemma. The sub-level lemmas are described and motivated in Appendix F, 
where also the assumptions are described.
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defined in that ideal state, thereby proving Lemma I. Subsection 6.3.3 is devoted to
Lemma II where it is described how it can be proved that all transitions in the ideal
model, IM.δ, preserve SEC. Finally, a simple motivation is given of why Lemma I 
and Lemma II imply Lemma III. (All reasonings in this section are with respect to 
the ideal model IM.)

6.3.1 Security Invariant SEC

The security invariant SEC must be defined with Lemma I and Lemma II in 
consideration:

• Lemma I: The properties an ideal state must have in order to imply that 
only signed Linux code is executed from that ideal state and that the NIC is 
in a defined state in that ideal state.

• Lemma II: The properties an ideal state must have such that the next 
transition from it does not cause the succeeding state to falsify SEC.

These two considerations together with the development of the proof plan have led 
to the following definition of SEC:

SEC(ideal_state i)  ≝ CPU_MEMORY(i)  ∧ NIC(i),

where

CPU_MEMORY(ideal_state i) ≝
WT_EX_REF(i)  ∧ SOUND_PT(i)  ∧ CONST_PT(i)  ∧ SOUND_MMU(i) ∧

LINUX(i),

NIC(ideal_state i) ≝
FINITE_WORD_ALIGNED_CPPI_RAM_QUEUES(i)  ∧ NIC_BDS(i) ∧

NO_BD_OVERLAPS(i)  ∧ NIC_DATA_NO_EXEC_CONF(i) ∧
NIC_READ_ONLY(i)  ∧ CANNOT_DIE(i)  ∧ TD_STOP_NIC(i) ∧

RECV_BD_REF(i)  ∧ INIT_TD_IDLE(i) ∧
RX_BUFFER_OFFSET_DMACONTROL_ZERO(i)  ∧ ACTIVE_CPPI_RAM(i).

Each predicate is described and formally defined in Appendix E. Due to space 
limitations, this subsection gives intuitive descriptions of only four predicates of 
CPU_MEMORY and two predicates of NIC. Those descriptions are enough to 
understand the lemmas and definitions described in this chapter.

The purpose of the predicate CPU_MEMORY is to ensure that the CPU, MMU, 
memory and certain data structures of the formal software design are in consistent 
and secure states (with respect to ensuring that executed Linux code is signed). 
This subsection describes the following four predicates of CPU_MEMORY:

• SOUND_PT:

All page table entries in L1 and L2 blocks are secure: (i) Blocks are not 
mapped by page tables in L1 and L2 blocks as both writable and 
executable, and if blocks are executable then their contents are signed, and 
(ii) all second-level entries of page tables in L1 blocks refer to page tables 
in L2 blocks.
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SOUND_PT is used to prevent unsigned Linux code from being executed 
by the CPU.

• CONST_PT:

Execution of Linux cannot cause the CPU to write L1 or L2 blocks.

CONST_PT prevents the execution of Linux code from changing: (i) the 
access permissions to enable the CPU to write and then execute unsigned 
Linux code, and (ii) the memory mapping to enable access to hypervisor or 
monitor memory.

• SOUND_MMU:

The first-level page table that the MMU uses in an address translation is in
a block of type L1. Also, the virtual to physical address mappings of the 
hypervisor and the monitor are as specified (according to the compilation 
of their source code), and the memory regions of the hypervisor and the 
monitor contain their specified code (produced by the compilation of their 
source code).

SOUND_MMU ensures that when an exception occur, the CPU executes 
hypervisor code, and together with SOUND_PT, SOUND_MMU ensures 
that the MMU applies the security policy (the CPU can only execute signed
Linux code). The former property is used to prove Lemma V.

• LINUX:

If the CPU is executing Linux, then the CPU is configured to do so, and τ is
correct:

◦ If the program counter is mapped by the MMU to a physical address 
allocated to Linux, then the CPU is in non-privileged mode with 
DACR[5:4] = 0b01.

◦ Blocks typed as L1, L2 or D are allocated to Linux.

◦ Blocks typed as  are either unmapped by page tables in L1 and L2 ⊥
blocks, or mapped by page tables in L1 and L2 blocks as inaccessible 
to the CPU when the CPU executes Linux.

◦ Blocks containing NIC registers that affect which memory accesses the 
NIC performs are typed as MN.

◦ The block that contains NIC registers, none of which affect which 
memory accesses the NIC performs, is typed as N.

◦ Blocks allocated to the hypervisor or the monitor are typed as .⊥

LINUX ensures that Linux is only executed when the CPU is in non-
privileged mode with secure access permissions. It also allows hypervisor 
and monitor memory to be securely mapped by page tables in L1 and L2 
blocks, enabling the proof of Lemma V.

The purpose of the predicate NIC is to ensure that: (i) the NIC does not enable the 
CPU to execute unsigned Linux code, (ii) the NIC is in a defined state, and (iii) the
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values of the data structures of the formal software design correctly reflect the state
of the NIC. This subsection describes the following two predicates of NIC:

• NIC_READ_ONLY:

When the CPU is configured to execute Linux, the CPU cannot: (i) execute 
CPU instructions encoded by the contents of NIC registers, (ii) write NIC 
registers that affect which memory accesses the NIC performs, nor (iii) 
perform accesses to unaligned physical addresses, at which NIC registers 
are located.

NIC_READ_ONLY prevents the CPU, when configured to execute Linux, 
from executing unsigned code by fetching the contents of NIC registers, 
decode the fetched contents as instructions, and then execute the decoded 
instructions. Also, NIC_READ_ONLY prevents the CPU when executing 
Linux from reconfiguring the NIC to enter an insecure state, or access NIC 
registers at unaligned physical addresses causing the NIC to enter an 
undefined state.

• CANNOT_DIE:

The NIC cannot enter an undefined state when executing from its current 
state.

CANNOT_DIE ensures that the NIC can only enter NIC states that are 
defined when performing an arbitrary number of autonomous transitions, 
including zero, from the current NIC state of the ideal state.

6.3.2 Lemma I: SEC Is Secure

This subsection describes how it can be proved that SEC implies (i) that when the 
CPU executes Linux, the CPU executes signed code in non-privileged mode, and 
(ii) that the NIC is in a defined state. That is a description of how Lemma I can be 
proved:

i  ∀ ∈ Sideal. SEC(i)  ⇒ EXEC_SIGNED_LINUX_CODE(i)  ¬∧ i.nic.dead.

Assume SEC(i) holds for i  ∈ Sideal. The predicate CANNOT_DIE of SEC implies 
that the NIC is not in an undefined state in the ideal state i. The other conjunct in 
the consequent of the implication, EXEC_SIGNED_LINUX_CODE(i), is defined 
as

LCE(i)  ⇒ CPUL(i)  ∧ LINUX_CODE_SIGNED(i).

Assume LCE(i). Consider first CPUL(i). The first bullet item in the description of 
the predicate LINUX in the previous Subsection 6.3.1 states that LINUX includes 
the predicate

“If the program counter is mapped by the MMU to a physical address allocated to 
Linux, then the CPU is in non-privileged mode with DACR[5:4] = 0b01.”

According to the definitions of LCE and CPUL in Section 6.1, this an informal 
formulation of

LCE(i)  ⇒ CPUL(i).
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Since LCE(i) is assumed, this implication means that CPUL(i) holds.

Consider LINUX_CODE_SIGNED(i), which is defined as

∀code  <word32768>. ∈ code  ∈ linux_code(i)  ⇒ sign(code)  ∈ i.spec.GI.

Assume that a bit string of length 32768 bits (4 kB), code, is in linux_code(i). By 
the definition of linux_code, code is contained in a memory block allocated to 
Linux and mapped by the MMU as executable. Since SEC(i) implies 
SOUND_MMU(i) and SOUND_PT(i), the MMU computes address mappings via 
page tables located in L1 and L2 blocks. In addition, SOUND_PT(i) states that if 
page tables in L1 and L2 blocks maps blocks as executable, then their contents are 
signed. Hence, the signature of code is in the golden image.

6.3.3 Lemma II: Ideal Model Satisfies SEC

This subsection describes how it can be proved that all states in the ideal model 
satisfy SEC. That is a description of how Lemma II can be proved:

∀i  ∈ IM.S. SEC(i).

In the third step in the first part of the proof plan, described in Subsection 6.2.2.1, 
it was stated that the ideal model is defined such that all of its initial states satisfy 
SEC:

∀i  ∈ IM.IS. SEC(i).

It is therefore sufficient to prove Lemma II by proving that all transitions in the 
ideal model preserve SEC, which is the fourth step of the first part of the proof 
plan:

∀i →l i'  ∈ IM.δ. SEC(i)  ⇒ SEC(i').

This preservation property is proved by considering how the three types of 
transitions in the ideal model operates. That is, the operations of the following 
transitions:

• Non-privileged CPU transitions: Describe the execution of Linux 
instructions. These transitions are described by the CPU model when it is in
non-privileged mode in the pre-state i.

• Specification transitions: Take the role of the exception handlers and 
operate according to the formal software design. These transitions occur 
when the CPU model is in privileged mode in the pre-state i.

• NIC transitions: Describe the operations performed by the NIC and how the
NIC handles memory read request replies. Each NIC transitions is one 
autonomous NIC transition possible followed by a memory read request 
reply transition, if the autonomous transition issued a memory read request.

It has been reasoned that SEC is preserved by non-privileged CPU transitions, the 
extended memory mapping request handlers (which extended the original memory 
mapping request handlers [86] to take the operation of the NIC into account) and 
the NIC register write request handlers, which are a part of the specification 
transitions, and NIC transitions. To give some insight to the reasonings that can be 
used to prove that all transitions in the ideal model, IM.δ, preserve SEC, 
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motivations are given of why the six predicates of CPU_MEMORY and NIC 
intuitively described in Subsection 6.3.1 are preserved by non-privileged CPU and 
NIC transitions. Reasonings of how the other predicates are preserved and how 
specification transitions preserve SEC are omitted for space limitations.

For specification transitions, all such transitions modify i.cpu.uregs.r15 (the 
program counter) and i.cpu.sregs.CPSR[4:0] (used to set execution mode of the 
CPU) when returning the CPU to Linux in non-privileged mode. SEC depends on 
both of these state components. Of the other state components that SEC depends 
on, i.cpu.cp15.TTBR0, i.cpu.cp15.DACR, i.memory, i.nic and i.spec, it is only the 
memory mapping and NIC register write request handlers that modify these state 
components. (The memory mapping and NIC register write request handlers 
modify: TTBR0 when the first-level page table is switched; DACR is not accessed 
by the specification transitions since there is no monitor in the ideal model and 
DACR is only used to manage memory access permissions for Linux and the 
monitor, as described in the last paragraph in Subsection 2.3.4.1; memory when 
modifying a page table entry; nic when writing a NIC register; and spec when 
modifying a data structure.) Apart from proving that all specification transitions 
correctly restore r15 and CPSR[4:0], it is sufficient to prove that all specification 
transitions preserve SEC by proving that the memory mapping and NIC register 
write request handlers preserve SEC and that all other operations described by the 
specification transitions (e.g. interrupt handling) do not access TTBR0, DACR, 
memory, nic and spec.

Most of the reasonings in the following two subsections, of that non-privileged 
CPU and NIC transitions preserve the six predicates of CPU_MEMORY and NIC, 
are based on that non-privileged CPU and NIC transitions do not modify the state 
components that SEC depends on. Since these reasonings assume that SEC holds 
for the pre-state i, this non-modification property implies that the six predicates 
also hold for the post-state i'.

6.3.3.1 Non-Privileged CPU Transitions Preserve SEC

This subsection motivates why non-privileged CPU transitions in the ideal model, 
i →CPU i', i →EXC i'  ∈ IM.δ, preserve SOUND_PT, CONST_PT, SOUND_MMU and
LINUX of CPU_MEMORY, and NIC_READ_ONLY and CANNOT_DIE of NIC. 
The following list motivates why non-privileged CPU transitions preserve the four 
predicates of CPU_MEMORY:

• SOUND_PT(i'): By CONST_PT(i) L1 and L2 blocks are non-writable, and 
by SOUND_MMU(i) and SOUND_PT(i) the MMU uses only page tables in
L1 and L2 blocks. SOUND_PT(i) also states that page tables in L1 and L2 
blocks do not map executable blocks as writable and that executable blocks
have signed contents. That is, L1, L2 and executable blocks cannot be 
modified by non-privileged CPU transitions from i. Since only 
specification transitions can modify i.spec.τ, the sets of L1 and L2 blocks 
are identical in i and i'. Hence, in i' blocks that are mapped by page tables 
in L1 and L2 blocks are still not mapped as both writable and executable, 
and if blocks are mapped as executable, their contents are still signed. In 
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addition, all second-level entries of page tables in L1 blocks still refer to 
page tables in L2 blocks. This means that SOUND_PT(i') holds.

• CONST_PT(i'): In Section E.4 it is listed which state components each 
predicate of SEC depends on. That list shows that CONST_PT depends only
on i.spec.ρwt and i.spec.τ. Since only specification transitions can modify 
these two data structures of the formal software design, CONST_PT(i') 
holds.

• SOUND_MMU(i'): Since TTBR0 and τ cannot be modified by non-
privileged CPU transitions (TTBR0 can only be accessed in privileged 
mode), the first-level page table used by the MMU in i' is still in a block of 
type L1. This is the first property of SOUND_MMU.

The MMU using a first-level page table in an L1 block, SOUND_PT(i) 
(second-level entries of page tables in L1 blocks refer only to page tables in
L2 blocks), CONST_PT(i) (L1 and L2 blocks cannot be modified), and that 
DACR is not accessible in non-privileged mode, together imply that the 
memory mappings performed by the MMU are identical in i and i', since 
the MMU only depend on these state components according to mmu. The 
memory mappings of the hypervisor and the monitor are therefore identical 
in i and i'. This is the second property of SOUND_MMU.

LINUX(i) states that blocks allocated to the hypervisor and the monitor are 
typed as , and that page tables in ⊥ L1 and L2 blocks either do not map 
such blocks or maps them as inaccessible to the CPU when the CPU 
executes Linux (which the CPU does when it is in non-privileged mode). 
This page table property and the MMU only using page tables in L1 and L2 
blocks (as motivated in the reasoning of that SOUND_PT(i') holds), imply 
that the blocks containing the code of the hypervisor and the monitor is 
unmodified by non-privileged CPU transitions. The specified code of the 
hypervisor and the monitor is therefore still contained in their allocated 
blocks. This is the third and last property of SOUND_MMU. Hence, 
SOUND_MMU(i') holds.

• LINUX(i'): All but the first conjunct of LINUX depend only on τ and the 
contents of L1 and L2 blocks. Neither of these state components can be 
modified by non-privileged CPU transitions, since only specification 
transitions can modify τ, and according to CONST_PT, non-privileged CPU
transitions cannot modify L1 nor L2 blocks.

The first conjunct of LINUX, “If the program counter is mapped by the 
MMU to a physical address allocated to Linux, then the CPU is in non-
privileged mode with DACR[5:4] = 0b01.”, is the informal description of 
LCE(i)  ⇒ CPUL(i). The following reasoning of why this predicate is 
preserved is done by case analysis of when LCE(i) is true and false.

Assume LCE(i) is true. Since LCE(i)  ⇒ CPUL(i) holds, CPUL(i) holds. 
CPUL(i) depends only on CPSR[4:0] and DACR[5:4]. Of these two register
fields only CPSR[4:0] can be modified when the CPU is in non-privileged 
mode. Such modifications can only occur due to the CPU taking an 
exception. Exceptions cause the program counter to be set to a specific 
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address. Since SOUND_MMU(i') states that the hypervisor code is mapped 
as specified. This means that an exception causes the MMU to map the 
program counter to hypervisor code. Hence, when exceptions occur LCE(i')
is false, and when no exceptions occur CPUL(i') is true since CPUL(i) is 
true and CPSR[4:0] and DACR[5:4] are unmodified. Irrespective of 
whether an exception occur, LCE(i')  ⇒ CPUL(i') is true.

Assume that LCE(i) is false. By the definitions of LCE and mmu, when 
LCE(i) is false mmu(i, …) either returns  or a physical address that is ⊥
outside the memory region allocated to Linux. Consider first the case when 
mmu(i, …) returns . By the definition of ⊥ mmu, this means that either the 
virtual address in the program counter is unmapped or mapped without 
execute access permission. In either case, the CPU takes an exception. In 
the previous paragraph it was reasoned that when an exception occur, 
LCE(i') is false. Hence, if mmu(i, …) returns , ⊥ LCE(i')  ⇒ CPUL(i') is 
true.

Consider the case when mmu(i, …) returns a physical address that is 
outside the memory region allocated to Linux. By LINUX(i) blocks of type 
L1, L2 or D are allocated to Linux. The physical address returned by 
mmu(i, …) must therefore be mapped to a physical address that belongs to 
a block of type , ⊥ MN or N. Such blocks are mapped as non-executable as 
implied by the following predicates:

◦ SOUND_MMU(i) and SOUND_PT(i): As was reasoned for 
SOUND_PT(i'), these two predicates imply that mmu(i, …) depends 
only on page tables in L1 and L2 blocks.

◦ LINUX(i): Page table entries in L1 and L2 blocks maps blocks typed as 
 as inaccessible to the CPU when the CPU executes Linux (in the ⊥

ideal model the CPU executes Linux when the CPU is in non-privileged
mode).

◦ LINUX(i): NIC registers are located in blocks typed as MN or N, and 
which are the only blocks typed as MN or N.

◦ NIC_READ_ONLY(i): When the CPU is configured to execute Linux 
(which the CPU is when it is in non-privileged mode in the ideal 
model), the CPU cannot interpret the contents of NIC registers as 
instructions to execute.

Hence, blocks of type , ⊥ MN or N, are mapped as non-executable causing 
mmu(i, …) to return . This leads to a contradiction since  is not a ⊥ ⊥
physical address, which was assumed.

The implication LCE(i')  ⇒ CPUL(i') is therefore true irrespective of 
whether LCE(i) is true or false, meaning that LINUX(i') holds.

The following motivates why non-privileged CPU transitions preserve all 
predicates of NIC. By the definition of the ideal model only specification 
transitions can access the i.spec state component. Non-privileged CPU transitions 
therefore cannot modify the i.spec state component.
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NIC_READ_ONLY implies that non-privileged CPU transitions cannot write NIC 
registers affecting which memory accesses the NIC performs. Since the NIC model
only includes NIC registers affecting which memory accesses the NIC performs, 
this means that non-privileged CPU transitions cannot modify the i.nic state 
component by writing NIC registers.

NIC_READ_ONLY also implies that non-privileged CPU transitions cannot read 
the physical address space at unaligned physical addresses locating parts of NIC 
registers. Such reads are the only reads that can modify the i.nic state component 
(which would cause the NIC model to modify the i.nic state component by setting 
i.nic.dead to true, marking the NIC state as dead and undefined). This means that 
non-privileged CPU transitions cannot modify the i.nic state component by reading
NIC registers.

Furthermore, TTBR0, and DACR cannot be modified by non-privileged CPU 
transitions. As was reasoned for SOUND_PT(i'), non-privileged CPU transitions 
cannot modify the contents of L1 and L2 blocks.

Non-privileged CPU transitions therefore cannot modify TTBR0, DACR, contents 
of L1 and L2 blocks, nic nor spec. Since NIC only depends on TTBR0, DACR, 
contents of L1 and L2 blocks, nic and spec, according to the list in Section E.4, 
non-privileged CPU transitions preserve NIC, and therefore NIC(i') holds.

6.3.3.2 NIC Transitions Preserve SEC

This subsection motivates why NIC transitions, i →NIC i'  ∈ IM.δ, preserve 
SOUND_PT, CONST_PT, SOUND_MMU and LINUX of CPU_MEMORY, and 
NIC_READ_ONLY and CANNOT_DIE of NIC. Some of the reasonings in this 
subsection depend on the Constant Memory Lemma (which is a sub-level lemma 
motivated in Section F.2):

Constant Memory Lemma.

If an execution trace starts from an ideal state satisfying SEC and only 
consists of NIC transitions, then no transition in that trace modifies the 
contents of an L1, L2 or executable D block, nor hypervisor or monitor 
memory.

The following list motivates why NIC transitions preserve the four predicates of 
CPU_MEMORY:

• SOUND_PT and CONST_PT: These two predicates depend only on the 
contents of L1, L2 and executable D blocks and the i.spec state component 
(according to the list in Section E.4). According to the Constant Memory 
Lemma, these blocks are not modifiable by NIC transitions, and NIC 
transitions cannot modify the i.spec state component.

• SOUND_MMU: According to the list in Section E.4, this predicate depends 
only on τ, TTBR0, DACR, and the contents of L1, L2, hypervisor and 
monitor code blocks. By the definition of the ideal model, NIC transitions 
cannot modify CPU registers nor τ in the i.spec state component, and by the
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Constant Memory Lemma NIC transitions cannot modify L1, L2, 
hypervisor nor monitor code blocks.

• LINUX: All but the first conjunct of LINUX depend only on τ and the 
contents of L1 and L2 blocks. By the Constant Memory Lemma, and since 
NIC transitions cannot modify τ, it can be concluded that NIC transitions 
preserve all but the first conjunct of LINUX. For the first conjunct, formally
described as LCE(i)  ⇒ CPUL(i), LCE depends only on mmu and r15, and 
CPUL depends only on CPSR[4:0] and DACR[5:4], where mmu depends 
only on TTBR0, DACR, contents of L1 and L2 blocks, and in order to 
determine which blocks are typed as L1 and L2, also τ. CPU registers and τ 
can only be modified by non-privileged CPU or specification transitions, 
and by the Constant Memory Lemma, NIC transitions cannot modify the 
contents of L1 or L2 blocks. Hence, NIC transitions cannot modify any of 
the state components that the first conjunct of LINUX depends on, and it 
can be concluded that NIC transitions cannot modify the state components 
that LINUX depends on. LINUX is therefore preserved by NIC transitions.

The following list motivates why NIC transitions preserve the two predicates of 
NIC:

• NIC_READ_ONLY: According to Section D.4, depends only on TTBR0, 
DACR, contents of L1 and L2 blocks, and spec. NIC transitions cannot 
modify CPU registers nor spec, and by the Constant Memory Lemma, nor 
contents of L1 and L2 blocks.

• CANNOT_DIE: States that autonomous NIC transitions cannot cause the 
NIC model to enter an undefined state. If the device model framework is 
correct, the NIC model also cannot enter an undefined state due to a 
memory read request reply transition. (If the device model framework gives
the NIC model a memory read request reply that, for instance, corresponds 
to a physical address that the NIC model has not requested to access, the 
NIC model enters an undefined state). Assuming that the device model 
framework is correct, this means that the NIC model still cannot enter an 
undefined state after the NIC model has generated an autonomous 
transition and possibly a following memory read request reply transition.

6.3.3.3 Lemma III Implied by Lemma I and Lemma II

The reasonings in the previous two Subsections 6.3.3.1 and 6.3.3.2 give an 
indication of why certain predicates of SEC are preserved by non-privileged CPU 
and NIC transitions. Since the initial states of the ideal model, IM.IS, are defined to
satisfy SEC and all transitions in the ideal model, IM.δ, preserve SEC (which has 
been reasoned to a significant extent), Lemma II follows:

i  ∀ ∈ IM.S. SEC(i).

Lemma I and Lemma II imply Lemma III

∀i  ∈ IM.S. EXEC_SIGNED_LINUX_CODE(i)  ¬∧ i.nic.dead.

This lemma states that in the ideal model, only signed Linux code can be executed 
and the NIC is always in a defined state. This means that the formal software 
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design is correct and that the formal software design can be considered as the 
formal specification for the implementation of the hypervisor and the monitor. The 
next section describes the second part of the proof plan of how it can be proved 
that the implementation of the hypervisor and the monitor is correct with respect to
their formal specification (software design).

6.4 Lemma VI: Implementation Is Correct
The purpose of this section is to describe the details of the second part of the proof 
plan and how Lemma VI can be proved:

∀r  ∈ RLM.S. ∃i  ∈ ILM.S. r R i.

This lemma states: For each state in the real model in which the CPU is configured
to execute Linux, there exists a state in the ideal model in which the CPU is 
configured to Linux such that the two states are related by R. Two states related by 
R means that those two states have equal values of the state components that affect 
(i) the sets of transitions starting from the two states, and (ii) the validity of the 
property of Lemma III for an individual ideal state. The first property is used to 
prove that the executions of the binary code of Linux are identical on the binary 
interfaces described by the real model and the ideal model. The second property is 
used to transfer the property of Lemma III from a state in the ideal model to a state 
in the real model.

The presentation of this section follows the four steps outlined in Subsection 
6.2.2.2. Subsection 6.4.1 presents the definition of the simulation relation R such 
that R states the equality described in the previous paragraph. Subsection 6.4.2 
defines RLM and ILM on top of RM and IM, respectively, to only include states and
transitions where the CPU is configured to execute Linux and transitions 
describing the complete execution of an exception handler. Subsection 6.4.3 states 
Lemma IV and motivates that lemma by means of a sub-level lemma which 
describes how it can be proved that each initial state in RLM.IS is related to some 
initial state in ILM.IS. Subsection 6.4.4 describes how the simulation proof method
is applied to prove Lemma V of that each transition is RLM.δ is matched by a 
transition in ILM.δ with respect to R. Subsection 6.4.5 concludes by describing 
how Lemma VI is implied by Lemma IV and Lemma V.

Some execution trace notation is useful in this section. Let

π = s0 →l_0 s1 →l_1 … →l_n-1 sn

be a sequence of transitions in RM.δ, IM.δ, RLM.δ or ILM.δ, respectively. Then:

• π[a:b], 0 ≤ a ≤ b ≤ n, is the sub-execution trace of π starting from the a-th 
state sa and ending in the b-th state sb: π[a:b] = sa →l_a … →l_b-1 sb.

• π[a], 0 ≤ a ≤ n, is the a-th state of π: π[a] = sa.

• label(π, a), 0 ≤ a < n, is the label of the a-th transition: label(π, a) = l_a.

• length(π) is equal to the number of transitions in π: length(π) = n.
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6.4.1 Definition of Simulation Relation R

For R to be used to transfer Lemma III from the ideal model to the real model, R 
must require a related pair of a real state and an ideal states to have equal values of 
certain state components such that:

• Lemma V can be proved: For each transition in RLM.δ from a real state in 
RLM.S, there exists a transition in ILM.δ from a related ideal state in ILM.S 
such that the two transitions describe identical operations.

• Lemma IX can be proved: The properties of Lemma III, if Linux code is 
executed then that code is signed, and the NIC is in a defined state, can be 
transferred by R from the ideal state to the related real state.

During the development of the proof plan these two requirements of R have lead to
the following definition of R  ⊆ Sreal  ⨯ Sideal:

R  {(≝ r, i) | CPU_EQ(r.cpu, i.cpu)  ∧ MEMORY_EQ(r.memory, i.memory) ∧
NIC_EQ(r.nic, i.nic)  ∧ HVM_SPEC_EQ(r.memory, i.spec)},

where:

• bool CPU_EQ(cpu_state rcpu, cpu_state icpu) ≝
rcpu.uregs = icpu.uregs  ∧ rcpu.sregs.CPSR = icpu.sregs.CPSR ∧
rcpu.cp15.TTBR0 = icpu.cp15.TTBR0 ∧
rcpu.cp15.DACR = icpu.cp15.DACR.

• bool MEMORY_EQ(word32 → word8 rmemory,
word32 → word8 imemory) ≝

[∀pa  ∈ LINUX_MEM. rmemory(pa) = imemory(pa)] ∧
[∀pa  ∈ HYP_CODE. rmemory(pa) = imemory(pa)] ∧
[∀pa  ∈ MON_CODE. rmemory(pa) = imemory(pa)],

where HYP_CODE and MON_CODE are the sets of physical addresses 
allocated to the hypervisor and the monitor to store their code, respectively. 
The description of the predicate SOUND_MMU in Subsection 6.3.1 
mentions that the contents of these two memory regions contain the code of
the hypervisor and the monitor as produced by the compilation of their 
source code. This means that the ideal model specifies (and contains) the 
binary code implementing the hypervisor and the monitor according to 
what the compiler produces from their source code.

• bool NIC_EQ(nic_state rnic, nic_state inic)  ≝ rnic = inic.

• bool HVM_SPEC_EQ(word32 → word8 memory, spec_state spec) ≝
hvm_to_spec(memory) = spec.

The rest of this subsection gives an intuition of why this definition of R can be 
used to prove Lemma V and Lemma IX. Since Lemma V assumes that the related 
ideal state is in the ideal model, IM.S, the ideal state satisfies SEC by Lemma II. 
The following properties, implied by SEC, CPU_EQ, MEMORY_EQ and NIC_EQ 
therefore hold on the related states:

• SEC implies that the page tables used by the MMU in the ideal state are 
located in the memory region allocated to Linux and that those page tables 

154



only allow the CPU in non-privileged mode to access Linux memory and 
read NIC registers: SOUND_MMU states that the first-level page table used
by the MMU is located in an L1 block. SOUND_PT states that second-level
entries of page tables located in L1 blocks only refer to page tables in L2 
blocks. LINUX states that all blocks typed as L1, L2 or D are allocated to 
Linux and blocks typed as  are inaccessible. ⊥ NIC_READ_ONLY implies 
that the CPU when executing Linux (which is done in non-privileged 
mode) can only access NIC registers by means of reads.

• CPU_EQ implies that the location of the first-level page table used by the 
MMU, and the values of the CPU registers that affect the execution of CPU
instructions in non-privileged mode, in the related states are equal: TTBR0 
determines the location the first-level page table, and the registers affecting 
CPU instruction executions in non-privileged mode are the general-purpose
registers, CPSR, TTBR0 and DACR (there are probably many other 
registers that affect the execution of CPU instructions in non-privileged 
mode, but those registers are not critical in this context and therefore can be
simply included in the relation).

• MEMORY_EQ states that the contents of the memory region allocated to 
Linux in the related states are equal.

• NIC_EQ states that the NIC is in the same state in the related states.

The consequence of these properties is that in related states, the MMU uses 
identical page tables, which allow the CPU when executing Linux to only access 
Linux memory and reading NIC registers. Since CPU registers, Linux memory and
NIC registers have equal contents in related states, the CPU in the real model and 
the CPU in the ideal model execute identical Linux code and those executions 
operate on identical Linux data and NIC register contents. Non-privileged CPU 
transitions from related states therefore describe identical operations. Hence, 
Lemma V can be proved for transitions in RLM.δ that correspond to transitions in 
RM.δ that start from states in which the CPU is in non-privileged mode.

According to NIC_EQ, the nic state components of the related states are equal. 
Since the transitions of the NIC model only depend on the state of the NIC, this 
predicate implies that NIC transitions starting from related states describe identical 
operations. Lemma V can therefore be proved for NIC transitions in RLM.δ.

Consider the properties of the following assumption and the definitions of 
MEMORY_EQ and HVM_SPEC_EQ:

• Assumption: The executions of the binary code of the hypervisor and the 
monitor contained in their memory regions in the memory state component 
of the ideal state, and the specification transitions describe identical 
operations.

• MEMORY_EQ: The binary code of the hypervisor and the monitor in the 
related states are equal.

• HVM_SPEC_EQ: The values of the data structures of the hypervisor and 
the monitor in the related states are equal.
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These three properties imply that the executions of the exception handlers of the 
hypervisor and the monitor in the real model and the specification transitions in the
ideal model, describe identical operations. Lemma V can therefore be proved for 
transitions in RLM.δ that correspond to exception handler executions. Hence, 
Lemma V can be proved for all three types of transitions in RLM.δ: CPU 
transitions describing the execution of Linux, NIC transitions describing the 
execution of the NIC, and exception handler transitions describing the execution of
exception handlers possibly interleaved with NIC transitions.

Consider Lemma IX. Since Lemma IX assumes that the related ideal state is in 
IM.S, the ideal state satisfies SEC by Lemma II. Lemma I can therefore be applied 
stating that from the ideal state, if the CPU executes Linux code, that code is 
signed. Since the ideal state satisfies SEC, the properties implied by SEC, 
CPU_EQ, MEMORY_EQ and NIC_EQ described above hold on the related states, 
and therefore the CPU executes identical Linux code from the related states. 
Hence, only signed Linux code is executed from the related real state.

By NIC_EQ the NIC is in the same state in the related states. Since the NIC is in a 
defined state in the ideal state, according to Lemma I, the NIC is also in a defined 
state in the real state.

6.4.2 Definitions of RLM and ILM

Proving Lemma VI with respect to RM and IM is not possible because the 
execution of an exception handler of the hypervisor and the monitor is described 
by several transitions in RM.δ, while the execution of an exception handler in the 
ideal model is described by one specification transition in IM.δ. The implication of 
this is that intermediate states in execution traces describing exception handler 
executions in RM are not related to any state in IM.S. For instance, in RM, the data 
structures of the software design are updated stepwise by several transitions, while 
in IM the data structures of the formal specification are updated atomically by one 
specification transition. In some states in RM.S the data structures therefore have 
inconsistent values, which is never the case for the states in IM.S. For instance, in 
Section 3.4 it is described that the data structures rx0_active_queue and α has the 
following relationship: α(w) is true if and only if the 32-bit word in CPPI_RAM 
with index w is occupied by a buffer descriptor located in the buffer descriptor 
queue starting at the physical address stored in rx0_active_queue. Since 
rx0_active_queue and α cannot be updated simultaneously by one CPU transition, 
this relationship will not hold immediately after one of them has been updated. In 
IM, rx0_active_queue and α are updated simultaneously by one specification 
transition. HVM_SPEC_EQ is therefore false for certain pairs of states in RM.S 
and IM.S, where the state in RM.S is an intermediate state in the execution of an 
exception handler in RM.Π. Similar problems occur for CPU_EQ, MEMORY_EQ, 
and NIC_EQ, when exception handlers in RM modify CPU registers, update page 
table entries in Linux memory, or write NIC registers.

To address this issue Lemma IV, V and VI are instead proved with respect to the 
labeled transition systems the real Linux model and the ideal Linux model. These 
two labeled transition systems are referred to by the four tuples RLM and ILM (see 
also Subsection 6.2.2.2). RLM and ILM are defined in terms of RM and IM, 
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respectively, but describe the executions of exception handlers by one transition. 
These definitions of RLM.S and ILM.S exclude intermediate states of exception 
handler executions, thereby making it possible to prove Lemma VI: For each real 
state r in RLM.S there exists an ideal state i in ILM.S such that r R i holds. RLM.S 
and ILM.S are therefore defined as RM.S and IM.S, except that states in RM.S and 
IM.S are omitted for which the CPU is not configured to execute Linux (that is, 
states not satisfying CPUL and which are part of exception handler executions), 
respectively. RLM.δ and ILM.δ are then defined to only contain transitions from 
one such state to another such state, both satisfying CPUL, on one condition. The 
condition is that there exists a sub-execution trace of an execution trace in RM.Π or
IM.Π, respectively, starting from the former state and ending in the other, such that 
no intermediate state in that sub-execution trace satisfies CPUL, except for states 
immediately following a sequence of transitions describing an exception handler 
execution and from which NIC transitions start.

For instance, in Figure 40 in Subsection 6.2.2.2, ra ⇝real rc, ra ⇝real rc+1, ia′ ⇝ideal ic′ 
and ia′ ⇝ideal ic′+1 exist in RLM.δ or ILM.δ because there exist four sub-execution 
traces of four execution traces in RM.Π or IM.Π such that in those four sub-
execution traces, ra, rr, rc+1, ia′, ic′ and ic′+1 satisfy CPUL but not the states between 
them, except for rc and ic′ from which NIC transitions start. Similarly, ra-1 ⇝real ra, 
rc+1 ⇝real rc+2, ia′-1 ⇝ideal ia′ and ic′+1 ⇝ideal ic′+2 exist in RLM.δ and ILM.δ since there 
exist sub-execution traces of execution traces in RM.Π or IM.Π, each consisting of 
a single transition starting from and ending in the involved states, which satisfy 
CPUL. rc ⇝real rc+1 and ic′ ⇝ideal ic′+1 are not in RLM.δ and ILM.δ since they 
correspond to NIC transitions in RM.δ and IM.δ, respectively, immediately 
following sequences of transitions describing exception handler executions.

Notice that RLM.S and ILM.S only include states from which Linux code can be 
executed, since all states in RLM.S and ILM.S satisfy CPUL. To prove that only 
signed Linux code is executed, it is sufficient to only consider such states. 
However, Theorem I is not defined in terms of RLM since RLM does not describe 
the real model implemented in HOL4. Also, RLM is less accurate than RM since 
RLM does not describe (include) certain critical hardware system executions. For 
instance, RLM does not describe executions of exception handlers that sets the 
program counter to Linux memory when the CPU is in non-privileged mode. Such 
exception handler executions give the control of the system to Linux, most likely 
causing CPUL to never hold again. Since RLM.Π only contains execution traces 
consisting of transitions between states satisfying CPUL, such behavior of 
exception handler executions are omitted from RLM.δ and RLM.Π. This execution 
behavior of exception handlers must be included in the model and must be proved 
to not occur. This issue is treated by the proof of Lemma VII in Subsection 6.5.1.

RLM is the four tuple RLM  (≝ S, IS, δ, Π) where each component is defined as 
follows:

• RLM.S  {≝ r | r  ∈ RM.S  ∧ CPUL(r)}: The set of states in the real Linux 
model is the set of states in the real model that satisfy CPUL.

• RLM.IS  ≝ RM.IS: The set of initial states in the real Linux model is equal to
the set of initial states in the real model. This definition of RLM.IS is 
consistent with the definition of RLM.S, motivated as follows. The sub-
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level lemma RM and IM Initially Related Lemma states (as motivated in 
Section F.3):

∀r  ∈ RM.IS. ∃i  ∈ IM.IS. r R i.

Consider an arbitrary real state r in RM.IS. By the definition of IM.IS 
(which is equal to ISideal, see Subsection 5.3.3), SEC(i)  ∧ LCE(i) holds. 
Since SEC(i) implies LINUX(i), which in turn implies LCE(i)  ⇒ CPUL(i) 
(see the first bullet item in the description of LINUX in Subsection 6.3.1), 
CPUL(i) holds. R requires r and i to have equal values of the CPSR and 
DACR registers. Since CPUL only depends on these registers, CPUL(r) 
holds. This means that r both is in RM.S and satisfies CPUL, implying r is 
in RLM.S. That is, RM.IS  ⊆ RLM.S and therefore RLM.IS  ⊆ RM.IS.

• RLM.δ  ⊆ Sreal {⨯ real}⨯Sreal: The set of transitions in the real Linux model. 
Each transition in RLM.δ has the label real. (r, real, r′)  ∈ RLM.δ is written 
as r ⇝real r′. r ⇝real r′ holds if and only if the following predicate holds:

∃π  ∈ RM.Π, 0 ≤ a < e < length(π).
r = π[a]  ∧ r′ = π[e]  ∧ CPUL(π[a])  ∧ CPUL(π[e]) ∧
[LT(π, a, e)  ∨ EHT(π, a, e)  ∨ NT(π, a, e)],

where LT, NT and EHT, together with the first four conjunctions, states that
r ⇝real r′ corresponds to either a Linux transition, an exception handler 
execution, or a NIC transition, respectively. That is, r ⇝real r′ corresponds to
a sub-execution trace π[a:e] in RM.Π that is of one of the following three 
types:

◦ A CPU transition describing the execution of a CPU instruction located 
in Linux memory.

◦ A sub-execution trace consisting of (i) transitions describing an 
execution of an exception handler of the hypervisor and the monitor, 
and (ii) the longest existing consecutive sequence of NIC transitions 
following that exception handler execution sub-trace. The reason why 
the transition r ⇝real r′ not only corresponds to the execution of an 
exception handler but also includes trailing NIC transitions is motivated
in the description of the definition of ILM.δ.

However, for each transition r ⇝real r′ corresponding to an exception 
handler execution and a non-empty sequence of NIC transitions in an 
execution trace π, there always exists another execution trace π′ giving 
rise to the existence of a transition r ⇝real r′′ where r′′ is followed by a 
NIC transition in π but a CPU transitions in π′. The reason it that the 
non-deterministic scheduler of the device model framework can select 
either a NIC transition or a CPU transition from r′′. In π, a NIC 
transition was selected but in π′, a CPU transition was selected. Hence, 
a definition where an arbitrary number of NIC transitions follows the 
exception handler transition would be equivalent with respect to which 
transitions are defined to be in ILM.δ. This definition of exception 
handler execution transitions was chosen because this definition 
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specifies which transitions are wanted in ILM.δ with respect to a 
specific execution trace π.

◦ A NIC transition describing one or two execution steps of the NIC 
(autonomous NIC transition possibly followed by a memory read 
request reply transition) between two states in which the CPU is 
configured to execute Linux. In addition, that NIC transition is not part 
of a consecutive sequence of NIC transitions immediately following a 
sub-execution trace describing an execution of an exception handler. 
Such NIC transitions are omitted in order to not include superfluous 
transitions in RLM.δ not needed in the proof plan (see previous bullet 
item; this is not important but gives a more precise set of transitions).

Figure 43 gives a graphical illustration of which sub-execution traces 
π[a:e], a transition r ⇝real r′ might correspond to. In the topmost sub-
execution trace, r ⇝real r′ corresponds to one CPU transition describing an 
execution of a CPU instruction located in Linux memory, since the start 
state and the end state satisfy CPUL. In the second topmost sub-execution 
trace, r ⇝real r′ corresponds to one NIC transition, since the start state and 
the end state satisfy CPUL, and the NIC transition is not a part of a 
consecutive sequence of NIC transitions immediately following a sub-
execution trace describing an execution of an exception handler. In the 
second bottom sub-execution trace, r ⇝real r′ corresponds to a sub-execution
trace describing an exception handler execution followed by the longest 
existing consecutive sequence of NIC transitions in π following π[c]. The 
bottom sub-execution trace is similar to the second bottom sub-execution 
trace but with the difference that the longest existing consecutive sequence 
of NIC transitions is empty. In this case, c = e.

Recall that the non-deterministic scheduler of the device model framework 
always can schedule the CPU model to describe the next transition from a 
certain state. This means that for each sub-execution trace π[a:e] defining 
an exception handler transition including trailing NIC transitions in π[c:e], 
there always exists a sub-execution trace π′[a:e] of another execution trace 
π′ such that, π[0:d] = π′[0:d], for some c ≤ d < e, label(π, d) = NIC and 
label(π′, d) = CPU. Hence, for each state followed by a NIC transition and 
being a part of a sequence of NIC transitions immediately following a 
transition sequence of an exception handler execution, with respect to a 
certain sub-execution trace, there always exists a transition in RLM.δ that 
ends in that state. In Figure 40 in Subsection 6.2.2.2, rc is such a state which
is the last state of a transition sequence of an exception handler execution 
and which is followed by a single NIC transition, which in turn is followed 
by a CPU transition, defining the transition ra ⇝real rc+1. Since there exists 
another execution trace in which rc is followed by a CPU (or exception) 
transition, the transition ra ⇝real rc also exists in RLM.δ, ending in rc.

The following list formally defines and explains LT, EHT and NT, where 
EHT is defined in terms of EH and TNT:

◦ bool LT(real_trace π, nat a, nat e)  ≝ a + 1 = e  ∧ label(π, a) = CPU.
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LT (Linux Transition) states that π[a:e] is one CPU transition. 
(real_trace is the data type for sequences of transitions between real 
states of the data type real_state, and nat is the data type for natural 
numbers, including zero.)

◦ bool EH(real_trace π, nat a, nat c) ≝
[∃c. a < b < c]  [∧ ∀a < b < c. ¬CPUL(π[b])]  ∧ CPUL(π[c]).

160

Figure 43: A graphical illustration of which sub-execution traces π[a:e], π  ∈
RM.Π, a transition r ⇝real r′  RLM.δ can correspond to. The white states satisfy ∈
CPUL which the shaded states do not. Four sub-execution traces are shown, 
denoted by π[a-1:e+1] or π[a-2:e+1]. For each sub-execution trace, π[a:e] 
corresponds to a transition r ⇝real r′  RLM.δ.∈
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EH (Exception Handler) states that:

▪ There exists at least one state in π between π[a] and π[c].

▪ All states in π between π[a] and π[c] does not satisfy CPUL, and π[c] 
satisfies CPUL, meaning that π[a + 1:c – 1] is a part of an exception
handler execution trace, and π[c] is the state to which that exception 
handler execution returns and in which the CPU is configured to 
execute Linux.

◦ bool TNT(real_trace π, nat c, nat e) ≝
[∀c ≤ d < e. label(π, d) = NIC]  ∧ label(π, e) ≠ NIC.

TNT (Trailing NIC Transitions) states that all transitions in π[c:e], if any
(c < e), are NIC transitions, but not the following transition π[e: e + 1].

◦ bool: EHT(real_trace π, nat a, nat e) ≝
∃a < c ≤ e. EH(π, a, c)  ∧ TNT(π, c, e).

EHT (Exception Handler sub-execution Trace) states that π[a:e] is an 
execution trace of an exception handler execution, π[a:c], followed by 
the longest consecutive sequence of NIC transitions, π[c:e], which is 
possibly empty.

◦ bool NT(real_trace π, nat a, nat e) ≝
a + 1 = e  ∧ label(π, a) = NIC ∧
¬[ 0 ≤ ∃ f < a. label(π, f) = RET  [∧ ∀f < g ≤ a. label(π, g) = NIC]].

NT (NIC Transition) states that π[a:e] is one NIC transition, and that 
this transition is not a part of a sub-execution trace of π only consisting 
of NIC transitions immediately following a sub-execution trace 
describing an exception handler execution.

• RLM.Π: The set of execution traces in the real Linux model. Let

ψ = r0 ⇝real … ⇝real rn, n ≥ 0.

ψ is in RLM.Π if and only if r0  ∈ RLM.IS and each transition is in RLM.δ: 
0 ≤ ∀ j < n. rj ⇝real rj+1  ∈ RLM.δ.

The ideal Linux model, ILM  (≝ S, IS, δ, Π), is defined similarly:

• ILM.S  {≝ i | i  ∈ IM.S  ∧ CPUL(i)}.

• ILM.IS  ≝ IM.IS. This definition is consistent with the definition of ILM.S. 
The states in IM.IS are defined to satisfy LCE and SEC, where SEC 
includes the implication LCE  ⇒ CPUL. All states in IM.IS therefore satisfy 
CPUL. Hence, ILM.IS  ⊆ ILM.S.

• ILM.δ  ⊆ Sideal {⨯ ideal}⨯Sideal: All transitions in the ideal Linux model have 
the label ideal. (i, ideal, i′)  ∈ ILM.δ is written as i ⇝ideal i′. ILM.δ is defined 
as RLM.δ is defined, but where the involved predicates, LT, EH, TNT, EHT 
and NT are defined for execution traces consisting of ideal states. i ⇝ideal i′ 
holds if and only if the following predicate holds:
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∃ν  ∈ IM.Π, 0 ≤ a < e < length(ν).
i = ν[a]  ∧ i′ = ν[e]  ∧ CPUL(ν[a])  ∧ CPUL(ν[e]) ∧
[LT(ν, a, e)  ∨ EHT(ν, a, e)  ∨ NT(ν, a, e)].

Figure 44 gives a graphical representation of which sub-execution traces 
ν[a:e] can correspond to if EHT(ν, a, e) holds, defining an exception 
handler transition i ⇝ideal i′  ∈ ILM.δ.

Since specification transitions in IM include descriptions of exception 
returns, NT is defined slightly differently for execution traces in IM.Π 
compared to execution traces in RM.Π:
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Figure 44: A graphical representation of the structure of the exception handler 
transitions in ILM.δ. Two sub-execution traces are shown, denoted by ν[a-2:e+1], 
ν  IM.Π. For both sub-execution traces, ν[a:e] defines an exception handler ∈
transition i ⇝ideal i′  ILM.δ. Comparing to Figure 43, there are two differences ∈
between exception handler transitions in RLM.δ and exception handler transitions 
in ILM.δ. The first difference is that for r ⇝real r′, π[a+1:c-1] can contain both 
CPU and NIC transitions, while for i ⇝ideal i′, ν[a+1:c-1] can only contain NIC 
transitions. The second difference is that for r ⇝real r′, the transition π[c-1:c], 
having the label RET, describes an execution of an exception return instruction, 
while for i ⇝ideal i′, the transition ν[c-1:c], having the label SPEC, describes the 
execution of all operations of an exception handler. Linux and NIC transitions 
have identical structure in RLM.δ and ILM.δ, corresponding to one CPU transition
or one NIC transition in RM.δ or IM.δ, respectively.
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bool NT(ideal_trace ν, nat a, nat e) ≝
a + 1 = e  ∧ label(ν , a) = NIC] ∧
¬[ 0 ≤ ∃ f < a. label(ν , f) = SPEC  [∧ ∀f < g ≤ a. label(ν , g) = NIC]].

The reason why transitions in RLM.δ and ILM.δ corresponding to exception
handler sub-execution traces in RM.Π and IM.Π are defined to also include 
the longest following consecutive sequence of NIC transitions, is because 
of the proof approach of Lemma V. As briefly described in Subsection 
6.2.2.2, Lemma V can be proved for a transition r ⇝real r′ corresponding to 
an exception handler sub-execution trace π[a:e] by first identifying another 
sub-execution trace π′[a:e] in RM.Π such that the following three 
conditions hold. First, the start states are equal, π[a] = π′[a]. Second, all 
transitions in π[a:e] combined describe identical operations as described by 
all transitions in π′[a:e] combined, but in π′[a:e] the CPU transitions occur 
in consecutive sequence. Third, since the transitions in π[a:e] and π′[a:e] 
describe identical operations (the operations are possibly described in 
different orders), π[e] = π′[e]. (In Figure 41, π[a] and π′[a] are denoted by ra, and
π[e] and π′[e] are denoted by rc, where no consecutive sequence of NIC 
transitions immediately follows the transitions describing the exception 
handler execution).

In the description of how Lemma V can be proved (sketched in Subsection 
6.2.2.2 and described formally in Subsection 6.4.4), it is motivated that for 
each exception handler sub-execution trace π[a:e] there exists such another 
exception handler sub-execution trace π′[a:e] in RM.Π. Due to the 
requirements that π[a:e] and π′[a:e] describe identical operations and that 
the CPU transitions occur in consecutive sequence in π′[a:e], some 
operations described by NIC transitions during the exception handler 
execution in π[a:e] are described by NIC transitions after the exception 
handler execution in π′[a:e].

Once π′ has been identified, Lemma V is proved by identifying a transition 
i ⇝ideal i′ corresponding to an exception handler sub-execution trace ν[a′:e′] 
in IM.Π, such that ν[a′:e′] matches π′[a:e] with respect to R. ν[a′:e′] 
matches π′[a:e] with respect to R if ν[a′:e′] describe identical operations as 
described by π′[a:e], which is proved in four steps:

1. The EXC transitions in π′[a:a + 1] and ν[a′:a′ + 1] describe identical 
operations.

2. The following NIC transitions describe identical operations.

3. The CPU transitions (including the RET transition) in π′ describe 
identical operations as described by the specification transition in ν. 
The reasoning in this step relies on that the CPU transitions in π′ occur 
in consecutive sequence.

4. The trailing NIC transitions in π′ describe identical operations as 
described by the trailing NIC transitions in ν.

It is the fourth proof step that necessitates the need for the transitions in 
ILM.δ that describe exception handler executions to also include all trailing 
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NIC transitions. This fourth proof step is only necessary when the 
exception handler sub-execution trace π[a:e] interacts with the NIC.

However, just because transitions in ILM.δ describing exception handler 
executions must include all trailing NIC transitions, it does not mean that 
the transitions in RLM.δ that describe exception handler executions must 
also include all trailing NIC transitions. The reason why RLM.δ is defined 
similarly to how ILM.δ is defined is because such a definition of RLM.δ 
makes the transitions in RLM.δ and ILM.δ have a similar structure, making 
them easier to deal with in the proof of Lemma V. Such a definition of 
RLM.δ also enables a bisimulation proof between the real Linux model and 
the ideal Linux model. (A bisimulation proof between RLM and ILM means
that Lemma V is also proved for the case where the roles of RLM and ILM 
are swapped). Bisimulation results are motivated in Section F.12 and 
discussed in Section 8.1.

• ILM.Π: The set of execution traces in the ideal Linux model. Let

ω = i0 ⇝ideal … ⇝ideal in, n ≥ 0.

ω is in ILM.Π if and only if i0  ∈ ILM.IS and each transition of ω is in 
ILM.δ: 0 ≤ ∀ j < n. ij ⇝real ij+1  ∈ ILM.δ.

6.4.3 Lemma IV: Correct Initialization

Lemma IV (∀r  ∈ RLM.IS. ∃i  ∈ ILM.IS. r R i) states that for each initial state in the 
real Linux model, there exists an initial state in the ideal Linux model such that the 
two states are related by R. The meaning of this statement is that the initialization 
code of the hypervisor initializes the system into a secure state from which Linux 
can be executed. Subsection F.3 motivates the sub-level lemma RM and IM 
Initially Related Lemma, which states that for each initial state in the real model, 
there exists an initial state in the ideal model such that the two states are related by 
R (∀r  ∈ RM.IS. ∃i  ∈ IM.IS. r R i). Since RLM.IS and ILM.IS are defined to be 
equal to RM.IS and IM.IS, respectively, Lemma IV follows from RM and IM 
Initially Related Lemma.

6.4.4 Lemma V: ILM Simulates RLM

This subsection describes the most important parts in proving Lemma V:

∀r, r′  ∈ RLM.S, i  ∈ ILM.S. r ⇝real r′  ∧ r R i  ⇒ ∃i′  ∈ ILM.S. i ⇝ideal i′  ∧ r′ R i′.

Lemma V states that for each transition r ⇝real r′ in the real Linux model, where r is
related by R to an arbitrary state i in the ideal Linux model, there exists a transition
i ⇝ideal i′ in the ideal Linux model such that r′ and i′ are related by R. (Stated in 
terms of the terminology used previously: For each transition in the real Linux 
model there exists a transition in the ideal Linux model such that latter transition 
matches the former with respect to R). The meaning of Lemma V is that the 
implementation of the exception handlers of the hypervisor and the monitor is 
correct. It also means that for each execution of the binary code of Linux on the 
binary interface described by the real Linux model, there exists an identical 
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execution of the binary code of Linux on the binary interface described by the ideal
Linux model.

The description of how Lemma V can be proved follows the following pattern:

1. Consider two arbitrary real states r and r′ in RLM.S and one arbitrary ideal 
state i in ILM.S.

2. Assume that there exists a transition in RLM.δ from r to r′, r ⇝real r′, and 
that r and i are related by R, r R i.

3. r ⇝real r′ is of one of three types of transitions in RLM.δ due to its 
definition in terms of LT, NT and EHT:

• LT: r ⇝real r′ corresponds to one transition in RM.δ that describes the 
execution of a CPU instruction located in Linux memory:

• EHT: r ⇝real r′ corresponds to an exception handler sub-execution trace 
π[a:e] in RM.Π, possibly followed by a sequence of NIC transitions.

• NT: r ⇝real r′ corresponds to one transition in RM.δ that describes one 
or two execution steps of the NIC (one autonomous NIC transition 
possibly followed by one memory read request reply transition).

For each of these three types of transitions that r ⇝real r′ can be of, it is 
reasoned that there exists an ideal state i′ in ILM.S and a transition in 
ILM.δ from i to i′, i ⇝ideal i′, such that r′ R i′ holds. These reasonings rely on
several sub-level lemmas, and before the reasonings are described, the 
referred sub-level lemmas are stated.

6.4.4.1 Sub-Level Lemma Statements

The following sub-level lemmas are referred to in the next three subsections and 
are included here for easy reference. All of them are motivated in Appendix F. The 
sub-level lemmas are:

• MMU Lemma.

If R relates the real model state r to the ideal model state i, then the
MMU computes identical values for identical input values in r and i:

∀r  ∈ RM.S, i  ∈ IM.S.
r R i
⇒
∀pl  {∈ PL0, PL1}, va  <word32>, ∈ ar  {rd, wt, ex}.∈

mmu(r, pl, va, ap) = mmu(i, pl, va, ap).

• CPU and NIC Rescheduling Lemma.

Assume that a transition π[a] ⇝real π[e] corresponds to a sub-execution 
trace π[a:e] of an exception handler of the hypervisor and the 
monitor, and where π[a] R i holds for some i  ∈ IM.S and π[a:e] 
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contains two consecutive transitions. The first transition of those two
consecutive transitions is a CPU transition that is not the first nor 
the last transition in π[a:e] and that transition does not access a NIC
register. The second transition is a NIC transition. That is, for some 
a < b < e – 1, π[b] →CPU π[b+1] →NIC π[b+2]. Then, there exists an 
exception handler sub-execution trace π  ′ [a:e] such that the order of 
the operations described by π[b] →CPU π[b+1] and π[b+1] →NIC π[b+2] are 
reversed. That is, π′[b] →NIC π′[b+1] →CPU π′[b+2]. In addition, this is the 
only difference between π[a:e] and π  ′ [a:e]. Formally:

∀π  ∈ RM.Π, i  ∈ IM.S, a, e, a < b < e – 1.
π[a] ⇝real π[e] ∧
CPUL(π[a])  ∧ CPUL(π[e])  ∧ EHT(π, a, e) ∧
π[a] R i ∧
label(π, b) = CPU  ∧ label(π, b+1) = NIC
⇒
∃π′  ∈ RM.Π.

π′[a] ⇝real π′[e]  ∧ label(π, b) = NIC  ∧ label(π, b+1) = CPU ∧
π[a:b] = π  ′ [a:b]  ∧ π[b+2:e] = π  ′ [b+2:e].

• Exceptions Preserve R Lemma.

Assume r R i and CPUL(r) hold for a real state r in RM.S and an 
ideal state i in IM.S, and the next CPU instruction execution from r 
causes the CPU to take an exception. Then the next CPU 
instruction execution from i also causes the CPU to take an 
exception, which is identical to the one taken from r, and the real 
state and the ideal state following the exceptions are related by R. 
Formally:

∀r, r′  ∈ RM.S, i  ∈ IM.S.
r R i  ∧ CPUL(r)  ∧ r →EXC r′  RM.δ∈
⇒
∃i′  ∈ IM.S. i →EXC i′  ∧ r′ R i′.

• NIC Preserves R Lemma.

Assume that a real state r in the real model and and ideal state i in 
the ideal model are related by R, and that a NIC transition starts 
from r and ends in the real state r′. Then there exists a NIC 
transition in the ideal model from i to an ideal state i′ such that r′ 
and i′ are related by R. Formally:
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∀r, r′  ∈ RM.S, i  ∈ IM.S.
r R i  ∧ r →NIC r′ 
⇒
∃i′  ∈ IM.S. i →NIC i′   ∧ r′ R i′.

• Exception Handlers Preserve R Lemma.

Assume π  ′ [b:c] is an exception handler sub-execution trace in RM.Π 
such that the following four conditions hold:

◦ π′[b] is the state from which the exception handler execution 
starts. (This means that either π′[b] immediately follows the 
transition in π′ in which the CPU takes the exception causing the
following exception handler sub-execution trace π  ′ [b:c], or only 
NIC transitions occur in π′ between that CPU exception 
transition and π′[b].)

◦ π′[c] is the state to which the exception handler execution ends. 
(That is, π′[c] is the first state in π′ after π′[b] which satisfies 
CPUL.)

◦ No NIC transitions occur in π  ′ [b:c].

◦ π′[b] R ν[b  ′ ] holds, where ν is an execution trace in the ideal model.

Then there exists a specification transition in the ideal model from 
ν[b  ′ ] to a state ν[b′+1], ν[b  ′ ] →SPEC ν[b′+1], such that π′[c] R ν[b′+1] holds.

The last three preservation of R lemmas have the intuitive meaning that CPU 
transitions describing CPU exceptions, NIC transitions, and exception handler sub-
execution traces in the real model can be matched with respect to R by CPU 
transitions describing CPU exceptions, NIC transitions, and specification 
transitions in the ideal model. These three lemmas are used to prove Lemma V for 
transitions r ⇝real r′ that correspond to single NIC transitions and exception handler
sub-execution traces. The following three subsection describes how Lemma V can 
be proved for Linux transitions, NIC transitions and exception handler sub-
execution traces.

6.4.4.2 Lemma V for Linux Transitions

Assume r ⇝real r′ corresponds to a Linux transition,

∃π  ∈ RM.Π, 0 ≤ a < e < length(π).
r = π[a]  ∧ r′ = π[e]  ∧ CPUL(π[a])  ∧ CPUL(π[e])  ∧ LT(π, a, e),

and that r is related by R to some ideal state i in ILM.S, r R i. The following is a 
motivation of why
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∃i′  ∈ ILM.S. i ⇝ideal i′  ∧ r′ R i′

holds.

First, SEC(i) holds by Lemma II and the definition of ILM.S being a subset of 
IM.S. Second, the CPU models in the real model and the ideal model describe 
identical CPU behavior for non-privileged CPU execution, which immediately 
follows by the definitions of the real model and the ideal model. These two 
properties are needed in following reasoning.

If the virtual address of the program counter in the ideal state i is mapped to a 
block of type , ⊥ MN or N, then mmu(i, PL0, i.cpu.uregs.r15, ex) = , since ⊥
LINUX(i) and NIC_READ_ONLY(i) of SEC(i) imply that such blocks are mapped 
as not executable. Since r R i requires the program counter values in r and i to be 
equal, the MMU lemma implies that mmu returns identical values for r and i, and 
therefore mmu(r, PL0, r.cpu.uregs.r15, ex) = . This in turn implies that the CPU ⊥
in the real model takes an exception and enters privileged mode in r′. This leads to 
a contradiction since CPUL(r′) is assumed, and therefore the virtual address of the 
program counter in i is mapped by mmu to a block of type L1, L2 or D. According 
to LINUX(i), blocks of type L1, L2 or D are allocated to Linux.

The CPU in the real model and the CPU in the ideal model executes identical 
instructions from r and i, since (i) the virtual addresses of the program counters in 
r and i are mapped to the same physical address in Linux memory, and (ii) r R i 
requires the contents of Linux memory to be equal in r and i. Furthermore, the 
execution of those two identical instructions will operate on identical data. There 
are two reasons. First, r R i requires the following registers to be equal in r and i: 
The general-purpose and CPSR CPU registers, and the NIC registers. Second, all 
memory operands are equal for the instruction executions (data in memory the 
instructions operate on) from r and i, since:

• The virtual address references made by the instructions are equal due to 
equal CPU registers and identical instructions.

• The virtual to physical address mappings are equal in r and i according to 
the MMU lemma.

• As reasoned above, the memory references cause no exceptions and 
address locations in Linux memory, which is equal in r and i.

The executed CPU instructions, described by r →CPU r′ and i →CPU i′, will therefore
perform identical operations. The state components in r and i that are related by R 
are equal and modified identically to produce r′ and i′. Hence, the state components
that R depends on are also equal between r′ and i′, and therefore r′ R i′ holds.

Finally, it must be shown that i ⇝ideal i′ holds. That is, it must be shown that 
CPUL(i)  ∧ CPUL(i′) holds and i ⇝ideal i′ is equal to ν[a] ⇝ideal ν[e] for an execution 
trace ν  ∈ IM.Π such that LT(ν, a, e) holds (see definition of ILM.δ in Subsection 
6.4.2; NT and EHT are not relevant since the transition is a CPU transition 
involving no exception handler execution). CPUL(i) and CPUL(i′) hold since 
CPUL(r), CPUL(r′), r R i and r′ R i′ hold and R requires equality on CPSR and 
DACR between related states.
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Since i is assumed to be in ILM.S and ILM.S  ⊆ IM.S, i is in IM.S. The definitions 
of IM.S and IM.Π imply that all states in IM.S are visited by some execution trace 
in IM.Π (see their definitions in Subsection 5.3.3), and therefore i is visited in an 
execution trace in IM.Π. i →CPU i′ is described by one of the three CPU transition 
rules in Subsection 5.3.2.1, and by the definition of IM.Π there exists therefore an 
execution trace ν  ∈ IM.Π that includes i →CPU i′. This means that there exists 
indexes a and e of ν such that a + 1 = e, label(ν, a) = CPU (= LT(ν, a, e)), ν[a] = i 
and ν[e] = i′. Hence, i ⇝ideal i′ holds.

To conclude, ∃i′  ∈ ILM.S. i ⇝ideal i′  ∧ r′ R i′ holds.

6.4.4.3 Lemma V for Exception Handler Transitions

Assume r ⇝real r′ corresponds to an exception handler transition,

∃π  ∈ RM.Π, 0 ≤ a < e < length(π).
r = π[a]  ∧ r′ = π[e]  ∧ CPUL(π[a])  ∧ CPUL(π[e])  ∧ EHT(π, a, e),

and that r is related by R to some ideal state i in ILM.S, r R i. The following is a 
motivation of why

∃i′  ∈ ILM.S. i ⇝ideal i′  ∧ r′ R i′

holds.

Assume r ⇝real r′ corresponds to a sub-execution trace π[a:e], π  ∈ RM.Π. Since 
π[a:e] describes an execution of an exception handler, it might involve CPU 
transitions describing executions of CPU instructions located in hypervisor or 
monitor memory, and possibly also NIC transitions. According to the definition of 
EHT, π[a:e] has the shape:

π[a:e] = π[a] →EXC π[a+1] → … → π[c-1] →RET π[c] →NIC … →NIC π[e],

where the absence of a label on a transition between π[a+1] and π[c-1] denotes a 
transition of any type (exception return to start the execution of the monitor, 
exception to resume the execution of the hypervisor, execution of CPU instructions
located in hypervisor or monitor memory, or NIC transitions). (According to the 
definition of EHT, the trailing NIC transitions do not necessarily occur but are 
included in the reasoning, since the case with no trailing NIC transitions is similar 
but simpler.)

To prove ∃i′  ∈ ILM.S. i ⇝ideal i′  ∧ r′ R i′, there are two cases to consider: Exception 
handlers that do not access NIC registers, and exception handlers that do access 
NIC registers. The latter case only occur when a NIC register write request handler
is executed and is significantly more complex that the former case. This subsection
reasons how Lemma V can be proved in the former case and the end of this 
subsection gives an intuitive view of how the latter case is handled. If the 
execution of an exception handler invokes the monitor, exception returns and 
exceptions will occur before and after the monitor is invoked. In the real model and
in the ideal model, transitions describing exceptions and exception returns have the
labels EXC and RET, respectively. In this subsection, such transitions have the 
label CPU if they occur before and after the execution of the monitor.
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Assume no NIC register accesses are performed by the operations described by 
π[a:e]. The following is a reasoning of that there exists a transition i ⇝ideal i′ in 
ILM.δ such that r′ R i′ holds and i ⇝ideal i′ is equal to ν[a′] ⇝ideal ν[e′] for an execution 
trace ν  ∈ IM.Π. Furthermore, EHT(ν, a′, e′) holds for some indexes a′ and e′ and 
ν[a′:e′] has the following shape:

ν[a′:e′] = ν[a′] →EXC ν[a′+1] →NIC … →NIC ν[c′-1] →SPEC ν[c′] →NIC … →NIC ν[e′].

That is, first an exception occurs, then a consecutive sequence of NIC transitions 
followed by a specification transition that returns the CPU to Linux. Finally, 
another consecutive sequence of NIC transitions occur.

The proof of that ν exists is made by constructing ν, but before ν is constructed, 
another sub-execution trace π′  ∈ RM.Π is constructed. The transitions in π′ 
describe the same operations as described by the transitions in π, but the operations
described by the transitions in π′[a:e] might occur in a different order as described 
by the transitions in π[a:e]. In particular, the CPU transitions in π′[a:e] describing 
the execution of an exception handler occur in consecutive sequence without being
intermingled with NIC transitions. It can therefore be proved that the transitions in 
π′[a:e] that describe the operations of an exception handler are identical to the 
operations described by some specification transition in IM.δ. That is, the 
implementation of the hypervisor and the monitor operate according to the formal 
software design. π′ is constructed by applying the CPU and NIC Rescheduling 
Lemma on π[a:c] and then repeatedly on the result, such that π′[a:e] has the 
following shape:

π′[a] →EXC π′[a+1] →NIC … →NIC π′[b] →CPU … →CPU π′[c-1] →RET π′[c] →NIC … →NIC π[e],

and π′[a] = π[a] and π′[e] = π[e]. First an exception occurs, then a consecutive sequence 
of NIC transitions followed by a sequence of transitions describing an execution of
an exception handler, and finally another consecutive sequence of NIC transitions.

The following describes how ν can be constructed. As was reasoned at the end of 
Subsection 6.4.4.2, i is visited by some execution trace in IM.Π. Let ν be such an 
execution trace such that v[a′] = i for some a′. The transitions of ν following ν[a′] 
are derived according to the following four steps (Figure 45 illustrates these steps 
graphically):

1. Since r R i is assumed, where r = π[a] = π′[a] and i = ν[a′], the Exceptions 
Preserve R Lemma can be applied on π′[a] →EXC π′[a+1] and ν[a′] to derive the 
transition ν[a′] →EXC ν[a′+1] such that π′[a+1] R ν[a′+1] holds:

ν[a′:a′+1] = ν[a′] →EXC ν[a′].

2. The NIC Preserve R Lemma can be applied on π′[k′] →NIC π′[k′+1] and ν[k] such 
that ν[k′] →NIC ν[k′+1] and π′[k+1] R ν[k′+1] hold for a < k < b and a′ < k′ < c′ – 1, 
where b – a = c′ – 1 – a′ (the same number of NIC transitions follow the 
exception transitions):

ν[a′:c′–1] = ν[a′] →EXC ν[a′] →NIC … →NIC ν[c′–1].

3. The Exception Handlers Preserve R Lemma can be applied on π′[b:c] and 
ν[c′–1] to derive the transition ν[c′–1] →SPEC ν[c′] such that π′[c] R ν′[c′] holds:

ν[a′:c′–1] = ν[a′] →EXC ν[a′] →NIC … →NIC ν[c′–1] →SPEC ν[c′].
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4. The NIC Preserve R Lemma can be applied on π′[k′] →NIC π′[k′+1] and ν[k] such 
that ν[k′] →NIC ν[k′+1] and π′[k+1] R ν[k′+1] hold for c ≤ k < e and c′ ≤ k′ < e′, where
e – c = e′ – c′:

ν[a′:e′] = ν[a′] →EXC ν[a′] →NIC … →NIC ν[c′–1] →SPEC ν[c′] →NIC … →NIC ν[e′].

Since r′ = π[e] = π′[e] and π′[e] R ν[e′] hold, and by letting ν[e′] = i′, r′ R i′ holds.

i ⇝ideal i′ holds since (see definition of ILM.δ in Subsection 6.4.2):

• All transitions in ν[a′:e′] are described by the transition rules in Subsection 
5.3.2, and therefore ν is in IM.Π. (See definition of IM.Π in Subsection 
5.3.3.)
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Figure 45: The relationship between π, π′ and ν in the proof of Lemma V for 
exception handler transitions. No monitor invocations are shown. White states 
satisfy CPUL and shaded states do not satisfy CPUL. By assumption π[a] R ν[a′] 
holds. Since π[a:e] and π′[a:e] start from the same state and end in the same state,
π[a] = π′[a], π[e] = π′[e] and π′[a] R ν[a′] holds. The application of the Exceptions 
Preserve R Lemma in step 1 gives π′[a+1] R ν[a′+1]. The applications of the NIC 
Preserve R Lemma in step 2 give π′[b] R ν[c′-1]. The application of the Exception 
Handlers Preserve R Lemma in step 3 gives π′[c] R ν[c′]. The additional applications
of the NIC Preserve R Lemma in step 4 give π′[e] R ν[e′]. Since π[e] = π′[e], π[e] R ν[e′] 
holds.
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• i = ν[a′] and i′ = ν[e′].

• CPUL(ν[a′]) and CPUL(ν[e′]) (and therefore i′ is in ILM.S) hold because 
CPUL(r), CPUL(r′), r R i and r′ R i′ hold and R requires equality of CPSR 
and DACR between related states, respectively (and the equalities in the 
previous bullet item).

• The sub-execution trace ν[a′:e′] satisfies EHT(ν, a′, e′).

• CPUL(ν[e′]) and i′ = ν[e′] imply that i′ is in ILM.S.

Hence, ∃i′  ∈ ILM.S. i ⇝ideal i′  ∧ r′ R i′ holds for transitions i ⇝ideal i′ that correspond
to sub-execution traces describing executions of exception handlers not accessing 
NIC registers.

Consider the case where an exception handler sub-execution trace accesses NIC 
registers. It has been reasoned that Lemma V holds for many sub-execution traces 
describing executions of the NIC register write request handlers (the only code 
accessing NIC registers). To save space and avoid repetition, Subsection B.4.2 
provides a reasoning example of why Lemma V holds for sub-execution traces 
involving the execution of the most complex NIC register write request handler, 
namely cppi_ram_handler (described in Section 3.6). That example provides the 
main reasonings for proving Lemma V for exception handlers accessing NIC 
registers.

The main idea for proving Lemma V for exception handlers accessing NIC 
registers is the same as for exception handlers not accessing NIC register. Given an
arbitrary sub-execution trace including NIC register accesses, find another sub-
execution trace describing identical operations. The side conditions are that (i) each
operation described by a NIC transition in the arbitrary sub-execution trace are 
described either before or after the execution of the exception handler in the other 
sub-execution trace, and (ii) the start and end states of the two sub-execution traces
are equal, respectively.

As for exception handler sub-execution traces not accessing NIC registers, when 
finding such another sub-execution trace, operations described by a CPU transition
and a NIC transition in the arbitrary sub-execution trace might occur in the 
opposite order in the other sub-execution trace. However, for exception handler 
sub-execution traces accessing NIC registers, the CPU instruction execution 
described by the CPU transition might access a NIC register which might affect or 
be affected by the NIC operations described by the NIC transition. Hence, the 
order of the operations described by the CPU transition and NIC transition affects 
the end state of the exception handler sub-execution traces. Dependent operations 
described by CPU and NIC transitions with such a relationship therefore cannot be 
reordered.

However, this does not mean that Lemma V cannot be proved for sub-execution 
traces involving an execution of a NIC register write request handler. Lemma V 
can be proved for sub-execution traces involving an execution of a NIC register 
write request handler by considering (i) all possible computation paths of each NIC
register write request handler, and (ii) for each such computation path, all possible 
interleavings of CPU and NIC transitions that can possibly occur in the sub-
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execution trace describing the execution of that computation path. That is, all 
possible system execution scenarios are considered for an exception handler 
execution accessing NIC registers. Proving Lemma V for exception handlers 
accessing NIC registers in this way therefore requires a greater manual effort than 
for exception handlers not accessing NIC registers. However, many sub-execution 
traces describe identical operations (implying many sub-execution traces ending in 
the same state, denoted π[e] above), and therefore many sub-execution traces can be
considered simultaneously.

Other details that must be considered when proving Lemma V for exception 
handlers accessing NIC registers are:

• NIC operations described by NIC transitions in π might have to be 
internally reordered in π′, and NIC operations described by NIC transitions 
in π might in π′ occur before the CPU transitions describing the execution 
of an exception handler while other NIC operations occur after the 
execution of the exception handler. (See Subsection B.4.2.)

• The recheduled order of NIC operations in π′ might cause the execution of 
a NIC register write request handler to take another computation path 
compared to the execution of the NIC register write request handler in π. 
(See Subsection B.4.2.)

• When the CPU and the NIC access NIC registers that affect both the 
following execution of the CPU and the NIC, and how those accesses affect
their following execution. This involved, for instance, accesses to the 
ownership and the end of queue bits of buffer descriptors and writes to the 
CP registers for asserting and deasserting interrupts.

Another interesting point is that the NIC register write request handlers can be 
designed to simplify the analysis by considering how the NIC device driver in 
Linux configures the NIC. For instance, before cppi_ram_handler performs any 
operations, it reads data structures of the software design in order to conclude that 
the NIC is not performing operations related to initialization or tear downs 
(initialized, tx0_tearingdown and rx0_tearingdown described in Section 3.4). 
cppi_ram_handler can do this because the NIC device driver in Linux never writes
CPPI_RAM while the NIC performs initialization or tear down operations. 
However, this means that when Lemma V is proved for sub-execution traces 
involving cppi_ram_handler, no NIC transitions can occur that are described by 
the initialization, transmission teardown or the reception teardown automata. The 
NIC transitions that must be analyzed can therefore only be described by the 
transmission and reception automata, thereby simplifying the proof.

6.4.4.4 Lemma V for NIC Transitions

Assume r ⇝real r′ corresponds to a NIC transition,

∃π  ∈ RM.Π, 0 ≤ a < e < length(π).
r = π[a]  ∧ r′ = π[e]  ∧ CPUL(π[a])  ∧ CPUL(π[e])  ∧ NT(π, a, e),

and that r is related by R to some ideal state i in ILM.S, r R i. The following is a 
motivation of why
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∃i′  ∈ ILM.S. i ⇝ideal i′  ∧ r′ R i′

holds.

The NIC Preserves R Lemma implies that there exists a NIC transition i →NIC i′ 
such that r′ R i′ holds. i ⇝ideal i′ according to a reasoning similar to the one 
presented in the last two paragraphs in subsection 6.4.4.2, but with respect to the 
NIC transition rules in Subsection 5.3.2.2 and NT.

6.4.5 Lemma VI Implied by Lemma IV and Lemma V

This subsections describes how Lemma IV and Lemma V imply Lemma VI:

∀r  ∈ RLM.S. ∃i  ∈ ILM.S. r R i.

This description relies on that each state r  ∈ RLM.S is visited by some execution 
trace ψ  ∈ RLM.Π. Considering the definition of RLM, it is not obvious that this is 
true. The following is a reasoning of that each state r  ∈ RLM.S is visited by some 
execution trace ψ  ∈ RLM.Π.

Let r  ∈ RLM.S. By the definition of RLM.S, r  ∈ RM.S  ∧ CPUL(r) holds. r  ∈ RM.S
implies that r is visited by an execution trace π  ∈ RM.Π starting from r0  ∈ RM.IS. 
For any state, the non-deterministic scheduler of the device model framework can 
always select the CPU model to describe the next transition from that state. There 
exists therefore an execution trace that visits r such that r is followed by a CPU 
transition. Let π be such an execution trace. That is, r is visited by π such that π 
includes a CPU transition starting from r.

By definition, RLM.IS = RM.IS, and therefore r0  ∈ RLM.IS. According to the 
definitions of RLM.δ and RLM.Π, and since r0  ∈ RLM.IS, π gives rise to a 
sequence of transitions in RLM.δ that constitutes an execution trace ψ  ∈ RLM.Π. 
By the definition of RLM.δ, each such transition corresponds either to a Linux 
transition, an exception handler transition or a NIC transition. Considering the 
definitions of these three types of transitions, LT, EHT and NT, only the transitions 
in ψ defined by EHT and NT can cause ψ to omit r.

Each transition in ψ defined by EHT corresponds to some sub-execution trace 
π[a:e]. EHT is defined in terms of EH and TNT, each describing one part of π[a:e]:

• EH describes the first part of π[a:e], π[a:c], a < c ≤ e, which consists of 
transitions describing the execution of an exception handler. All of the 
states visited by π[a+1:c–1] do not satisfy CPUL while π[a] and π[c] satisfy 
CPUL. Since r satisfies CPUL, r is not visited by π[a+1:c–1].

• TNT describes the second part of π[a:e], π[c:e], a < c ≤ e, which consists of 
NIC transitions, and where the transition from π[e] is a CPU transition. Since
r is followed by a CPU transition in π, r is not visited by π[c:e–1].

Since a transition defined by EHT starts from π[a] and ends in π[e], r is not omitted 
by ψ due to a transition defined by EHT.

The definition of NT prevents a NIC transition in π from being included in ψ if that
NIC transition is a part of a consecutive sequence of NIC transitions immediately 
following an exception handler sub-execution trace. Such consecutive sequences of
NIC transitions are described by TNT in the definition of EHT. As concluded in the
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second item bullet above, r is not visited by such a NIC transition sequence except 
possibly for the last state in such a sequence. Since such a last state is the end state 
of a transition defined by EHT, r is not omitted by ψ due to a transition defined by 
NT.

Since r was arbitrarily chosen, each state r  ∈ RLM.S is visited by some execution 
trace ψ  ∈ RLM.Π:

∀r  ∈ RLM.S. ∃ψ  ∈ RLM.Π, 0 ≤ k ≤ length(ψ). ψ[k] = r.

Lemma VI can be derived as follows. Let r  ∈ RLM.S. Following the previous 
reasoning, there exists an execution trace ψ = ψ[0] ⇝real … ⇝real ψ[k]  ∈ RLM.Π, for 
some 0 ≤ k ≤ length(ψ), such that r = ψ[k], and where ψ[0]  ∈ RLM.IS by the 
definition of RLM.Π. Implied by Lemma IV (∀r  ∈ RLM.IS. ∃i  ∈ ILM.IS. r R i), 
there exists an ideal state ω[0]  ∈ ILM.IS such that ψ[0] R ω[0] holds. Applying 
Lemma V on ψ[j] ⇝real ψ[j+1]  ∧ ψ[j] R ω[j] derives ω[j] ⇝ideal ω[j+1]  ∧ ψ[j+1] R ω[j+1] such 
that ω[j+1]  ∈ ILM.S, 0 ≤ j < k. Hence, ψ[k] R ω[k] and ω[k]  ∈ ILM.S hold. Since r = ψ[k]

and by letting i = ω[k], r R i is derived, and where i  ∈ ILM.S. Since r was chosen 
arbitrarily the desired conclusion is derived:

∀r  ∈ RLM.S. ∃i  ∈ ILM.S. r R i.

6.5 Three Lemmas Implying Theorem I
This section covers the third part of the proof plan, briefly outlined in Subsection 
6.2.2.3. The following three subsections describe how the final three lemmas, 
Lemma VII, VIII and IX, can be proved, respectively.

6.5.1 Lemma VII

Lemma VII states two properties:

• When the MMU maps the value of the program counter to a physical 
address allocated to Linux, then the CPU is configured to execute Linux 
(the CPU is in non-privileged mode and DACR[5:4] = 0b01).

• When the CPU is not configured to execute Linux, then the NIC is in a 
defined state.

Formally: ∀r  ∈ RM.S. [LCE(r)  ⇒ CPUL(r)]  [¬∧ CPUL(r)  ¬⇒ r.nic.dead].

It is first discussed how the first conjunct of Lemma VII can be proved. That 
predicate is false only if LCE(r) is true and CPUL(r) is false. All states in RM.IS 
satisfy CPUL, since RM.IS = RLM.IS  ⊆ RLM.S and all states in RLM.S satisfy 
CPUL (see the definition of RLM). By definition of RM.Π, this means that the first 
state in an execution trace in RM.Π satisfies CPUL. Since CPUL only can be 
falsified by exceptions (only exceptions can modify the privilege level and DACR 
cannot be modified in non-privileged mode), states in RM.S not satisfying CPUL 
must follow an exception. An exception causes an exception handler of the 
hypervisor and the monitor to be executed. Hence, it is only the exception handlers
of the hypervisor and the monitor that can break the first conjunct of Lemma VII, 
by setting the program counter to point to Linux memory when the CPU is not 
configured to execute Linux. That is, the CPU must be in non-privileged mode and 
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DACR[5:4] = 0b01 (CPUL is satisfied), when an execution of an exception handler
sets the value of the program counter to be mapped to a physical address allocated 
to Linux (LCE gets satisfied).

To prove that all executions of all exception handlers configure the CPU to execute
Linux when the program counter value is set to point to Linux memory, it suffices 
to prove that all exception handlers of the hypervisor and the monitor terminate 
correctly:

• All monitor invocations terminate.

• All executions of all exception handlers of the hypervisor terminate by 
sooner or later setting the program counter value to be mapped to the next 
Linux instruction to be executed, and simultaneously setting the CPU in 
non-privileged mode, at which point DACR[5:4] must be equal to 0b01.

These two termination properties imply that all sub-execution traces of exception 
handlers terminate in states satisfying CPUL, which is required by EHT in the 
definition of RLM.δ. All sub-execution traces of exception handlers therefore have 
a transition in RLM.δ. Since Lemma V states that each such transition in RLM.δ 
have a matching transition in ILM.δ with respect to R, these two termination 
properties and Lemma V imply that all exception handlers are correct with respect 
to the formal software design specified by the ideal model, IM.

The two termination properties can be proved to hold for the exception handlers as 
reasoned in the following three steps. First, assume that the last state r  ∈ RM.S 
before an exception occurs is related to an ideal state i  ∈ IM.S. This assumption 
can be made since each initial state in RLM.IS is related to some initial state in 
ILM.IS, according to Lemma IV, and Linux and NIC transitions do not break this 
relationship, according to Lemma V. This means that the last state r  ∈ RM.S before
the first exception occurs in an execution trace in RM.Π is related to some ideal 
state i  ∈ IM.S. The termination properties then imply that the sub-execution trace 
of the invoked exception handler have a transition in RLM.δ. Lemma V therefore 
implies that the last state r′  ∈ RM.S of the sub-execution trace of the invoked 
exception handler is related by R to some ideal state i′  ∈ IM.S. This reasoning can 
then be applied inductively for later exception handler executions in an execution 
trace in RM.Π. This means that for each real state in RM, followed by an exception,
there always exists some ideal state in IM, such that the two states are related by R.

Second, the Constant Memory Lemma states that a consecutive sequence of NIC 
transitions starting from an ideal state satisfying SEC, cannot modify the contents 
of the memory regions allocated to the hypervisor and the monitor. By Lemma II 
all states in IM.S satisfies SEC. Considering the ideal model IM, no NIC transitions
from i can therefore modify the memory regions allocated to the hypervisor and the
monitor. Since the operation of the NIC only depends on its own state, and r R i 
implies that the NIC is in the same state in r and i, considering the real model RM, 
no NIC transitions from r can modify the memory regions allocated to the 
hypervisor and the monitor. If all executions of the exception handlers never 
configures the NIC to write into hypervisor or monitor memory, the sub-execution 
traces of those executions can be considered in isolation without considering NIC 
transitions. The reason is that in this case, the termination properties of the 
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exception handlers of the hypervisor and the monitor do not depend on the 
operation of the NIC, but only on the hypervisor and the monitor, since the NIC 
cannot modify the code nor the data of the hypervisor and the monitor.

Third, all exception handlers can be analyzed by generating their control flow 
graphs, as illustrated in Figure 46. Correct termination of the exception handlers 
can then be proved from properties implied by r R i and SEC(i) by proving that:

• All cycles in the control flow graph are finite.

• For each path of sufficient length, a control point in the exception handler is
reached where the virtual address in the program counter is mapped to a 
physical address allocated to Linux. For the first such encountered control 
point in the considered path, the CPU must be in non-privileged mode with 
DACR[5:4] = 0b01.

This proof approach is similar to how the binary code of the exception handlers of 
a hypervisor was formally verified by Dam et al. [68] with BAP [80]. That 
approach is probably useful in this context as well.

As stated previously, this termination proof relies on the executions of the 
exception handlers of the hypervisor and the monitor to not configure the NIC to 
modify the memory regions of the hypervisor and the monitor. This property can 
be proved when proving the second conjunct of Lemma VII. The reason is that 
these two proofs both rely only on the exception handlers of the hypervisor and the
monitor. (The second conjunct of Lemma VII depends only on the hypervisor and 
the monitor since ¬CPUL is true only for states visited by exception handler 
executions.) These two proofs can be accomplished as follows.

As in the proof approach of the first conjunct of Lemma VII, assume that for a real 
state r  ∈ RM from which an exception occurs there exists some ideal state i  ∈ IM 
such that r R i holds. r R i and SEC(i) (derived by means of Lemma II) imply that 
in r the data structures of the hypervisor and the monitor (described in Section 3.4) 
are consistent with the state of the NIC. By means of this information and by 
importing the control flow graphs of all exception handlers into HOL4, it can then 
be analyzed which values are written in which order to which NIC registers by the 
executions of those exception handlers. The HOL4 implementation of the NIC 
model can then be used to reason that the executions of the exception handlers do 
not configure the NIC such that the NIC might either (i) modify the memory 
regions allocated to the hypervisor or the monitor, or (ii) enter an undefined state.

6.5.2 Lemma VIII

Lemma VIII is

∀r  ∈ RM.S. CPUL(r)  ⇒ ∃i  ∈ IM.S. r R i.

Lemma VIII can be proved as follows. Let the real state r satisfy

r  ∈ RM.S  ∧ CPUL(r).

These two properties of r is in accordance with the definition of RLM.S,

RLM.S = {r | r  ∈ RM.S  ∧ CPUL(r)},

177



and thus r  ∈ RLM.S. Applying Lemma VI (∀r  ∈ RLM.S. ∃i  ∈ ILM.S. r R i) gives 
∃i  ∈ ILM.S. r R i. Since ILM.S is defined as a subset of IM.S,

ILM.S = {i | i  ∈ IM.S  ∧ CPUL(i)},

178

Figure 46: An example of a control flow graph of an exception handler. The graph 
includes control flow of the hypervisor and possibly also of the monitor. Each 
circle represents a control point in the exception handler, and each arrow 
represents a CPU instruction. The execution of the exception handler starts from a 
hardware state in which the CPU is in a state where it has just taken an exception. 
The real state representing that hardware state is assumed to be related to some 
state in the ideal model since CPU exceptions and NIC operations preserve R. 
Since all states in the ideal model satisfy SEC, that relationship enables certain 
properties of SEC to be transferred to the real state. The transferred properties are
therefore assumed to hold at the first control point of the exception handler. Those 
assumptions are used to prove by means of the control flow graph that the 
exception handler terminates correctly. For all computation paths, two properties 
must be proved. First, executions of loops represented by cycles terminate. Second,
a control point is reached at which both LCE and CPUL hold, neither of which 
hold at any previous control point.
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∃i  ∈ IM.S. r R i holds. This proves Lemma VIII since r was chosen arbitrarily.

6.5.3 Lemma IX

Lemma IX is

∀r  ∈ RM.S, i  ∈ IM.S.
r R i  [⇒ LCE(r)  ⇒ LINUX_CODE_SIGNED(r)]  ¬∧ r.nic.dead.

Lemma IX can be proved as follows. Let r  ∈ RM.S and i  ∈ IM.S and assume r R i. 
Lemma III gives ¬i.nic.dead. Since r R i implies r.nic = i.nic, ¬r.nic.dead holds.

To prove LCE(r)  ⇒ LINUX_CODE_SIGNED(r), LCE(r) is assumed, which 
reduces the proof to LINUX_CODE_SIGNED(r). LINUX_CODE_SIGNED(r) is by
definition equal to

∀code  <∈ word32768>.
code  ∈ linux_code(r)  ⇒ sign(code)  ∈ hvm_to_spec(r.memory).GI.

Assume code  ∈ linux_code(r), where code is an arbitrary bitstring of length 32678 
(4 kB). The proof reduces to

sign(code)  ∈ hvm_to_spec(r.memory).GI.

The MMU Lemma and r R i (the content of Linux memory is the same in r and i) 
imply linux_code(i) = linux_code(r), and therefore code  ∈ linux_code(i) holds.

Recall that LCE(r) is assumed, which by definition is equal to

∃pa  ∈ LINUX_MEM.
mmu(r, PL0, r.cpu.uregs.r15, ex) = pa  ∨ mmu(r, PL1, r.cpu.uregs.r15, ex) = pa.

Since r R i holds, r.cpu.uregs.r15 = i.cpu.uregs.r15. The MMU lemma can 
therefore be applied to derive:

∀pl  {∈ PL0, PL1}.
mmu(r, pl, r.cpu.uregs.r15, ex) = mmu(i, pl, i.cpu.uregs.r15, ex).

Hence, LCE(i) holds (recall that LCE is defined similarly for real states and ideal 
states).

Applying Lemma III again gives EXEC_SIGNED_LINUX_CODE(i), which by 
definition is equal to

LCE(i)  ⇒ CPUL(i)  ∧ LINUX_CODE_SIGNED(i).

Since LCE(i) holds, LINUX_CODE_SIGNED(i) holds, which by definition is equal
to

∀code  <word32768>. ∈ code  ∈ linux_code(i)  ⇒ sign(code)  ∈ i.spec.GI.

Above, code  ∈ linux_code(i) was derived, and thus sign(code)  ∈ i.spec.GI holds. 
Finally, r R i implies hvm_to_spec(r.memory).GI = i.spec.GI, and the desired 
conclusion can therefore be derived:

sign(code)  ∈ hvm_to_spec(r.memory).GI.

That concludes the description of how all top-level lemmas in the proof plan can 
be proved.
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6.6 Conclusion and Discussion
This section discusses correctness and practicalities of the proof plan and presents 
a summary of the proof plan.

6.6.1 Correctness of Proof Plan

Since the real model is a transition system (device model framework integrating 
the ARMv7 CPU model and the NIC model), the four tuple RM describes the real 
model relatively accurately on paper by means of the labeled transition system 
notation described in Subsection 2.1.2. The top-level lemmas, logical formulas and
many functions have also be defined or described accurately. Since these four 
components provide the base of the proof plan, the overall structure of the proof 
plan is probably correct.

It has been reasoned how each of the nine top-level lemmas can be proved by 
considering non-trivial details related to (some reasonings are omitted from the 
thesis to save space and avoid repetition):

• The formal and detailed definition of SEC in Appendix E.

• The preservation of SEC by the critical extended memory mapping request 
handlers, which are formally described in Appendix B. These formal 
descriptions have been considered, which include the requirements of these 
handlers (that are checked before executions of the handlers perform 
operations affecting the state, such as writing the page tables or updating 
the critical data structures ρwt, ρex and τ), and the operations performed by 
the executions of these handlers.

• The preservation of SEC by the critical NIC register write request handlers, 
also formally described in Appendix B, and how Lemma V can be proved 
for many execution scenarios involving executions of these handlers. The 
pseudocode of the NIC register write request handlers and the NIC model 
has been considered.

• How Lemma V can be proved for exception handler executions not 
accessing NIC registers by means of a few sub-level lemmas.

• Motivations of all sub-level lemmas (in Appendix F), and which take 
deeper details into account (compared to the top-level lemmas), like the 
operation of the MMU, the NIC and the formal definition of SEC.

All of these considerations increase the correctness of the proof plan.

There is a significant set of details that have not been considered (deliberately and 
perhaps also by mistake). All details, of course, cannot be considered when making
the pen-and-paper proof plan, but only when implementing the proof plan in 
HOL4, which provides computer support. Due to the amount of code, it is not 
unlikely that errors exist in the definitions of the NIC model, the security invariant 
SEC, and the NIC register write request handlers, and in the formal descriptions of 
the extended memory mapping request handlers. Such errors are revealed by 
HOL4 when the proof plan is implemented.
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6.6.2 Practicalities of Proof Plan

In addition to the concern of whether the proof plan is correct, another concern is 
whether it is practically feasible to implement the proof plan in HOL4. The proof 
approach of applying the simulation proof method on RM/RLM (the real model 
representing the implementation of the complete system, including the the 
implementation of the formal software design) and IM/ILM (the ideal model 
specifying the formal software design), helps in making it feasible to implement 
the proof plan in several respects:

• The verification of the software design is separated from the verification of 
the implementation. The first part of the proof plan (Lemma I-III) is 
devoted to verify the software design, while the second part is devoted to 
verify that the implementation operates according to the software design 
(Lemma IV-VI). (The third part of the proof plan, Lemma VII-IX, is 
devoted to prove some additional properties of the implementation in order 
to imply the goal, Theorem I.) Proving Theorem I directly on the real 
model without the ideal model is probably more difficult and time 
consuming, than proving Theorem I by means of the simulation proof 
method with the ideal model. The reason is that high-level design concepts 
and low-level hardware details must be considered simultaneously in the 
former case, while they can be considered separately in the latter case. This 
difference in difficulty of reasoning that Theorem I holds, is true both when
constructing the proof plan with pen and paper, and when implementing the
proof plan in HOL4. For the same reason, the separation of the verification 
of the software design and the verification of the implementation of the 
software design, makes the HOL4 code implementing the proof plan easier 
to organize and understand, extend to prove new properties, or change 
because the hardware or software has changed.

• The software design and the implementation of it (described by IM and RM,
respectively) are clearly decoupled and the software design is clearly 
documented. This makes it easier to understand, extend and modify the 
software design, the implementation of the software design, the proof plan, 
and the implementation of the proof plan, compared to if the software 
design and the implementation of it were integrated (both described by RM,
since the implementation of the software design not only implements the 
software design but also describes it, although at a lower abstraction level, 
namely at the binary code level). The pseudocode of the NIC register write 
request handlers and the implementation of them demonstrate the 
decoupling of the software design and the implementation of it. For 
instance, a set of operations might be specified by the pseudocode by 
means of a recursive function, while implemented by means of a while 
loop. Likewise, the comments accompanying the pseudocode of the NIC 
registers write request handlers demonstrate the clear documentation of the 
software design. The formal definition of SEC further clarifies the design 
by unambiguously specifying what properties the software design must 
have. In addition, the software design is useful both for the proof plan and 
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for the implementation. As mentioned in Chapter 4, the implementation of 
the NIC register write request handlers was guided by their pseudocode.

As mentioned in the previous subsection, the proof plan, and additional material 
omitted from the thesis, have considered the main aspects necessary to consider for
proving that only signed Linux code is executed, where only the deeper details 
have been omitted. With these considerations in mind, it does not seem to be 
impossible to implement the proof plan in HOL4 because of the following reasons:

• Implementing the NIC model, the NIC register write request handlers, and 
the formal definition of SEC in HOL4 is relatively straightforward by 
following their formal definitions. (Recall that the NIC register write 
request handlers are a part of the ideal model for describing the formal 
software design).

• The original memory mapping request handlers are already specified in 
HOL4 [86], only needing a few extensions, which have been formally 
specified. These and the NIC register write request handlers constitute the 
critical parts of the formal software design, specified by the specification 
transitions in the ideal model.

• The other handlers, for instance related to interrupt and cache management,
are not accessing critical resources that SEC depends on. Proving that SEC 
is preserved by these other handlers is therefore easier than for the memory 
mapping and NIC register write request handlers. If the implementation of 
these proofs in HOL4 are still demanding, those implementations could be 
omitted for practical reasons, and still not significantly decreasing the 
reliability of the formal proof.

• Proving that the executions of the binary code of the exception handlers not
accessing NIC registers (all but the data abort exception handler) operate as
the formal software design can be accomplished by means of BAP [68], as 
mentioned in Subsection 6.5.1. Whether BAP is useful for verifying the 
binary code of the data abort exception handler (which might invoke the 
NIC register write request handlers to access NIC registers) remains to be 
investigated, since BAP is an external tool not considering the NIC model.

• As can be concluded from the previous item bullet list and the previous 
subsection, the proof plan is well-structured, includes several important and
non-trivial details, and has a significant trustworthiness.

In addition to these five aspects of whether the proof plan is feasible to implement 
in HOL4, the work behind the two theorems proved in HOL4 about the device 
model framework [85], described in Subsection 2.4.2, might also be useful for 
implementing the proof plan in HOL4. Those two theorems conclude the following
two isolation properties between a hypervisor and the guests executed on top of the
hypervisor under certain system configuration assumptions:

• Non-infiltration: The execution of a guest and the devices only accessing 
the memory of that guest cannot deduce any information about or be 
affected by the state of (i) I/O devices only accessing memory of other 
guests, (ii) other guests, and (iii) the hypervisor.
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• Non-exfiltration: The execution of a guest and the devices only accessing 
the memory of that guest cannot affect the state of (i) I/O devices only 
accessing memory of other guests, (ii) other guests, and (iii) the hypervisor.

Non-infiltration is not wanted for the monitor because that property prevents the 
monitor from both reading Linux memory when deciding whether Linux code is 
signed or not, and when reading ρwt, ρex and τ, which are all located in hypervisor 
memory.

For the system configuration which Linux is executed in, four of the six 
assumptions of the two theorems are true, since the hypervisor can configure the 
system such that the NIC:

• only accesses Linux memory.

• is configured to never enter an undefined state.

• never writes to its own NIC registers.

• is not configured by the CPU when the CPU is executing a guest (with 
respect to the relevant properties of the NIC: which memory accesses are 
performed by the NIC and whether the NIC is in an undefined state).

Since executions of the monitor must be able to read ρwt, ρex, τ and Linux memory, 
and the NIC asserts interrupts related to memory accesses the NIC has performed, 
the other two of the six assumptions of the two theorems (guest isolation, and I/O 
devices perform either memory accesses or interrupts, but not both) are false.

These contradictions between the current system configuration and these two 
theorems do not mean that the work behind the two theorems is not usable for 
proving that only signed Linux code is executed. Significant parts of the HOL4 
code of the proofs of these two theorems and the ideas for proving the two 
theorems in HOL4, might be possible to reuse by replacing the unsatisfiable 
assumptions with assumptions reflecting the current system configuration: When 
the CPU is executing the monitor, the CPU can only read ρwt, ρex, τ and Linux 
memory outside monitor memory, and NIC interrupts do not affect memory 
contents. None of these operations directly affect whether signed Linux code is 
executed or not.

Allowing the monitor to read ρwt, ρex, τ and Linux memory, and with the replacing 
assumptions, two new theorems are formulated and which state similar properties 
as the original two theorems but adjusted for the current system configuration:

• When the CPU is executing Linux, the CPU cannot deduce any information
from the states of the hypervisor and the monitor (non-infiltration for 
Linux), nor can the CPU affect the states of hypervisor and the monitor or 
configure the NIC (non-exfiltration for Linux).

• When the CPU executes the monitor, the CPU can, apart from only 
affecting the state of the monitor (non-exfiltration for the monitor), only 
read ρwt, ρex, τ and the memory region allocated to Linux (extended non-
infiltration for the monitor).
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The HOL4 implementation and the ideas behind it of the original two theorems 
might then be useful to prove the two new theorems. Such a result would probably 
be a useful lemma for proving that the transitions in the ideal model preserve SEC. 
For instance, such a lemma would be useful when proving the preservation of the 
following statements of the following predicates of SEC:

• SOUND_PT: The memory mappings of the page tables are secure.

• CONST_PT: The executions of Linux do not modify page tables.

• SOUND_MMU: The memory regions of the hypervisor and the monitor 
contain their specified code.

• LINUX: The blocks typed as  are either unmapped or mapped as ⊥
inaccessible by the page tables.

• NIC_READ_ONLY: The page tables prevent the CPU when the CPU is 
executing Linux to (i) interpret NIC register contents as CPU instructions, 
(ii) write NIC registers affecting memory accesses, and (iii) access 
unaligned physical addresses at which NIC registers are located.

• CANNOT_DIE: The page tables do not allow the CPU when executing 
Linux to configure the NIC such that the NIC enters an undefined state.

The challenges for implementing the proof plan in HOL4 are probably:

• Proving Lemma V for the data abort exception handlers which invoke the 
NIC register write request handlers. This task must, at least partly, be 
performed in HOL4 since the operation of the NIC (described by an HOL4 
implementation NIC model) must be taken into account. The practical tool 
BAP might therefore be of limited use when proving Lemma V for the data 
abort exception handler.

• Proving the sub-level lemmas. The drawback of the sub-level lemmas is 
that the reasonings behind them, presented in Appendix F, are less formal, 
compared to the top-level lemmas. These reasonings are therefore less 
useful for implementing the sub-level lemmas in HOL4.

• Proving that SEC is preserved by all transitions in the ideal model. This 
task must consider all predicates of SEC, all CPU instructions, all exception
handler specifications, and all step functions of the NIC model. The number
of functions specifying the operations described by all transitions in the 
ideal model is probably over 150 and some of those functions specify 
complex operations.

• Proving other necessary lemmas involving details not considered in the 
proof plan. Since there is a significant set of details to consider in the ideal 
model and the real model, proving these additional lemmas in HOL4 is 
probably non-trivial. In addition, since these details have not been 
considered in the proof plan, difficult problems might have been 
overlooked.
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The conclusion is therefore that the implementation of the proof plan in HOL4 is a 
demanding and time consuming task, but not impossible. Hence, the proof plan has
a practical value.

6.6.3 Summary

Two significant design decisions in the proof plan are inspired by Dam et al. [69]:

• How the formal software design of the hypervisor and the monitor is 
specified by the ideal model as a set of atomic exception handlers.

• How the simulation proof method can be applied to prove that the binary 
code of the hypervisor and the monitor is correct.

Section B.5 discusses why the exception handlers of the formal software design in 
the ideal model are atomic. This is a justified question since atomic exception 
handlers make the proof of Lemma V more difficult than if the exception handlers 
were non-atomic.

The following is a brief summary of why the proof plan has the structure it has 
(based on the contents in Subsections 2.3.4.2, 5.2.3, 6.6.1 and 6.6.2):

1. Proof tools other than theorem provers, such as static analyzers, code 
annotation tools and model checkers, are not practical in this context due to
complexity of the system to reason about and the sorts of properties to 
prove. The proof plan is therefore designed to be implemented in a theorem
prover.

2. Modeling is a complex and time consuming task, making it a practical 
necessity to reuse already implemented models. Since the device model 
framework describes the hardware at sufficient detail in the theorem prover 
HOL4, the proof plan is based on the device model framework instantiated 
with a HOL4 implementation of the NIC model (described in Section 5.1), 
which is the real model, denoted by RM.

3. Since the real model is accurately described on paper by the four tuple RM, 
by means of the transition system notation described in Subsection 2.1.2, 
the reasoning in the proof plan, describing how it can be proved that only 
signed Linux code is executed, focuses on the four tuple RM.

4. To make the proof plan well-structured, practically feasible to implement 
and understandable, the proof approach of the proof plan is based on the 
simulation proof method applied on the ideal (Linux) model, IM/ILM, and 
the real (Linux) model, RM/RLM. This proof approach enables the 
separation of:

• the proof (on IM/ILM) of that the (formal) software design is correct, 
which involves high-level design concepts, and

• the proof (on RM/RLM) of that the implementation of the (formal) 
software design is correct, which involves low-level hardware and 
binary code aspects.
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High-level design concepts and low-level hardware and binary code aspects
are therefore considered separately, contributing to the manageability of the
proof plan and its implementation in HOL4.
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7 Results
This chapter summarizes and motivates why the results of the work described in 
Chapters 3 through 6 are solutions to the four problems listed in the problem 
definition in Section 1.2.

Consider the first problem of providing an extension of the design of the memory 
mapping request handlers and a design of the NIC register write request handlers, 
such that the hypervisor, the monitor and Linux are securely separated and only 
signed Linux code is executed. Sections 3.5, 3.6 and 3.4 present the extended 
design of the memory mapping request handlers, the design of the NIC register 
write request handlers and the data structures these handlers operate on, 
respectively.

In the original design of the memory mapping request handlers not considering the 
NIC [86], the page tables are configured such that the CPU:

• when executing the monitor, can only (i) access monitor memory, (ii) read 
the writable and executable reference counters (ρwt and ρex, respectively) 
and the block type data structure (τ) located in hypervisor memory, and (iii)
read Linux memory.

• when executing Linux, can only access Linux memory but not write the 
page tables, which are located in Linux memory.

That is, without the NIC, the memory mapping request handlers provide secure 
separation between the hypervisor, the monitor and Linux. In addition, all Linux 
blocks mapped as executable to the CPU when executing Linux have a signature in
the golden image, and such blocks are not mapped as writable. That is, without the 
NIC, the memory mapping request handlers ensure that only signed Linux code is 
executed.

The NIC can perform two operations that affect the separation between the 
hypervisor, the monitor and Linux and whether only signed Linux code is 
executed: Access memory and modify NIC registers. In the extended design of the 
memory mapping request handlers considering the NIC, the page tables (i) are not 
allocated in blocks writable by the NIC, (ii) do not map NIC registers affecting 
memory accesses as writable to the CPU when the CPU is in non-privileged mode, 
and (iii) are not located at physical addresses locating NIC registers. That is, in the 
presence of the NIC (and assuming that the NIC register write request handlers 
securely configure the NIC), the memory mapping request handlers preserve the 
secure separation between the hypervisor, the monitor and Linux. In addition, the 
page tables do not map blocks writable by the NIC as executable nor map NIC 
registers as executable. That is, in the presence of the NIC, the memory mapping 
request handlers preserve the property of only signed Linux code execution. This 
extension of the design relies on the writable NIC reference counter (ρNIC located in
hypervisor memory; when the CPU is executing the monitor, the CPU cannot write
but only read this data structure) and two additional block types (MN for the blocks
addressing NIC registers that affect which memory accesses that are performed by 
the NIC, and N for the other blocks addressing NIC registers). The extended design
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of the memory mapping request handlers is provided by a formal description (see 
Appendix B).

In the design of the NIC register write request handlers, the NIC is only allowed to 
access memory blocks allocated to Linux and write blocks that do not contain page
tables nor are mapped as executable. In addition, the NIC is never configured such 
that it can enter an undefined state according to the NIC model (which formally 
describes when the NIC enters an undefined state), preventing the NIC from 
performing unknown operations. That is, the NIC register write request handlers 
preserve the secure separation between the hypervisor, the monitor and Linux, and 
the signed Linux code execution property. This design relies on, among other data 
structures, the executable reference counter (ρex) and the block type data structure 
(τ). The design of the NIC register write request handlers is provided in 
pseudocode (see Appendix B).

Consider the second and third problems of providing an implementation of the NIC
register write request handlers in the hypervisor, and an extension of the hypervisor
and Linux such that Linux has Internet access when executed on top of the 
hypervisor. Chapter 4 describes the implementation, which has been tested on 
BeagleBone Black to indeed give Linux restricted access to the NIC and access to 
the Internet.

Consider the fourth problem of providing a proof plan that describes how it can be 
formally proved in HOL4 that the binary code of the hypervisor and the monitor 
ensures that only signed Linux code is executed, and that is based on the device 
model framework [85]. Chapter 5 describes the models that are used in the proof 
plan, and Chapter 6 describes the proof plan.

The goal to prove of only signed Linux code execution is defined in terms of the 
real model. The real model is the device model framework instantiated with a 
model of the NIC. The device model framework is a transition system that 
describes how an ARMv7 CPU executes binary code, and can integrate I/O device 
models to form a formal model of a complete computer system. A model of the 
NIC is provided in pseudocode (see Appendix C), and which describes, in terms of 
a transition system, how the NIC on BeagleBone Black accesses memory and 
when the NIC enters an undefined state. The device model framework instantiated 
with a HOL4 implementation of the NIC model therefore formally describes in 
HOL4 how the hardware executes in which the hypervisor, the monitor and Linux 
are executed. Hence, the real model is suitable to use for formally proving that the 
binary code of the hypervisor and the monitor ensures that only signed Linux code 
is executed by the CPU in the hardware system of interest.

The proof plan is based on the simulation proof method applied on the real model 
and the ideal model. The real model describes the implementation, including both 
hardware and software aspects. The ideal model differs from the real model with 
respect to the description of the exception handlers and how they are executed. In 
the real model, the exception handlers consist of the binary code of the hypervisor 
and the monitor, and are described as being executed by the CPU instruction by 
instruction, possibly interleaved with NIC operations. In the ideal model, the 
exception handlers consist of mathematical functions, whose operations are 
described as being performed atomically without being interleaved with NIC 
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operations. These mathematical functions constitute the formal specification of the 
binary code implementation of the hypervisor and the monitor. Some of these 
functions are defined in terms of the functions describing the memory mapping and
NIC register write request handlers. The real model and the ideal model are 
formalized on paper by means of a classic notation for labeled transition systems.

The proof plan is mainly structured around nine top-level lemmas, Lemma I-IX. 
These lemmas are defined in terms of the formalizations of the real model and the 
ideal model and accurately described functions. Descriptions are provided of how 
each of these lemmas can be proved and how they are applied to prove that only 
signed Linux code is executed.

Lemma I and Lemma II are used to prove Lemma III. The critical part of these 
lemmas is the security invariant SEC, of which a formal definition is provided (see 
Appendix E). If a state satisfies SEC, only signed Linux code is executable in that 
state and all transitions from that state preserve SEC. SEC is then used to prove 
Lemma III: In the ideal model, only signed Linux code is executed. This means 
that the formal specification of the hypervisor and the monitor is correct.

Lemma IV and Lemma V are used to prove Lemma VI. The critical parts of these 
lemmas are a simulation relation and two additional models. The simulation 
relation implies that the operations performed from two related states are identical. 
The additional models, the real Linux model and the ideal Linux model, include 
only states from which Linux code can be executed and transitions between such 
states, enabling the application of the simulation proof method. The simulation 
proof method is then applied on the real Linux model and the ideal Linux model 
with respect to the simulation relation to prove Lemma VI: For each state in the 
real model from which Linux code is executed, there exists a state in the ideal 
model from which the same Linux code is executed. This means that the 
executions of the binary code of Linux are identical on the binary interfaces 
described by the real model and the ideal model.

Lemma VII, VIII and IX are used to prove that only signed Linux code is executed 
on the binary interface described by the real model. Lemma VII implies that the 
executions of the binary code of the exception handlers of the hypervisor and the 
monitor terminate correctly, and do not configure the NIC such that the NIC can 
enter an undefined state. Lemma VII might be possible to prove by means of BAP 
and HOL4. Lemma VII, VIII and IX are used to transfer the property of only 
signed Linux code execution of the ideal model, stated by Lemma III, to the real 
model, enabled by the identical Linux executions in the ideal model and in the real 
model, stated by Lemma VI. This means that the binary code implementation of 
the hypervisor and the monitor is correct with respect to their formal specification.

Hence, a relatively accurate pen-and-paper description has been given for how it 
can be proved in HOL4 that the binary code of the hypervisor and the monitor 
ensures that only signed Linux code is executed by the CPU in the system of 
interest.

All problems listed in the problem definition in Section 1.2 have thus been solved.
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8 Conclusion and Discussion
This chapter discusses what the work described in this thesis can be used for and 
the practical meaning of it. Thoughts, reflections and future work are also included.

8.1 Use within PROSPER
The current implementation of the hypervisor and the monitor is complete with 
respect to the software design described in Chapter 3. The next step is to 
implement all models in HOL4:

• The NIC model: Implement the pseudocode of the NIC model in HOL4.

• The real model: Instantiate the device model framework with the HOL4 
implementation of the NIC model.

• The ideal model: Make a copy of the real model and modify the CPU 
model such that the CPU model in privileged mode applies the functions 
specifying the exception handlers of the hypervisor and the monitor. This 
means that these specification functions must also be implemented in 
HOL4. The function specifying the supervisor call exception handler must 
apply functions specifying the extended memory mapping request handlers.
This involves extending the functions specifying the original memory 
mapping request handlers [86] to consider the NIC, as described in Section 
3.5 and Appendix B. The function specifying the data abort exception 
handler can be partly implemented by applying a HOL4 implementation of 
the pseudocode of the NIC register write request handlers.

Thereafter, the proof plan can be implemented in HOL4, with certain tasks 
accomplished by means of BAP. If these steps are performed, then it has been 
formally verified, at the CPU instruction abstraction level, that the binary code of 
the hypervisor and the monitor ensures that only signed Linux code is executed by 
the CPU on BeagleBone Black, with Linux having Internet access. This means that
if the signature function of the monitor is suitably chosen and the golden image of 
the monitor is suitably initialized, then, with high reliability, no malicious Linux 
code is executed. This includes both code being part of the Linux kernel, device 
drivers, modules loaded on demand, and applications.

PROSPER has recently extended the implementation of the hypervisor and the 
monitor to enable updates of the golden image. This makes the system more useful 
since software can be updated and new software can be downloaded, and which 
can then be executed if the signatures of that new code are in the updated golden 
image. (Without this update capability, if new software is developed after the initial
golden image is created, it would not be possible to execute that new software 
since the signatures of it would most likely not be in the initial golden image.) A 
new golden image is downloaded by means of a Linux application, and another 
Linux application is used to invoke a system call of the Linux kernel, which in turn
invokes a hypercall of the hypervisor, and which in turn invokes the monitor. These
invocations pass information to the monitor about the new golden image. The 
monitor implements SHA-256 to check the validity of the new golden image with 
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respect to a secret key stored in monitor memory. If the new golden image is valid, 
the old golden image is replaced by the new golden image and otherwise not. This 
implementation requires verification of that the golden image is updated securely. 
A definition in HOL4 must therefore be made of which requirements that must be 
satisfied in order for an update to be performed of the golden image. If these two 
additional verification tasks are performed, then the result is a system that is useful 
in numerous applications, and that with reliability prevents attackers from causing 
execution of software that can cause damage or danger. Such a system is therefore 
suitable for numerous security critical applications. Considering the examples 
mentioned in Chapter 1, such a system might be useful for building both industrial 
control systems and smartphones.

Another potentially useful result mentioned at the end of Section 6.4.2 and briefly 
motivated in Section F.12 is bisimulation between the real (Linux) model and the 
ideal (Linux) model. If it is proved that in the ideal (Linux) model the executions 
of Linux cannot deduce any information about the state of the formal specification 
(denoted by i.spec), then the bisimulation result implies that the executions of 
Linux cannot deduce any information about the state of the hypervisor or the 
monitor, and that the NIC does not prevent the transfer of that information security 
property from the ideal (Linux) model to the real (Linux) model. This information 
security property is important if confidential data is stored in the memory of the 
hypervisor or the monitor, which is the case for the secret key stored in monitor 
memory and that is used to check the validity of updates of the golden image. 
Bisimulation has been formally proved in HOL4 by Dam et al. [69] with respect to 
one model describing how two programs are executed by separate CPUs and on 
another model describing how the same two programs are executed on top of a 
hypervisor by one CPU. This bisimulation result implies that the executions of the 
two programs are identical in either system configuration.

The techniques used in PROSPER and in the work described in this thesis can also 
be used to secure other hardware platforms running other operating systems. The 
results produced by PROSPER and the work described in this thesis therefore give 
insights to how embedded systems can be secured from a more general 
perspective, rather than specifically for embedded systems based on an ARMv7 
CPU and Linux. Hence, these results are interesting to manufacturers and users of 
(security critical) embedded systems implemented by means of other hardware and
software. Motivated by Chapter 1, there is significant amount of work left before 
important systems used by society have the desired security and reliability.

8.2 Meaning and Cost of Formal Verification
In general, the purpose of formal verification is to verify that a system has an 
important property. It is therefore important to consider how likely it is that a 
system actually has a verified property. Since formal verification is performed with
respect to models, it is critical that the models correctly describe the system to 
verify and do not omit relevant behavior, in order for the verification to have a 
practical value. As discussed in Subsections 5.1.3 and 5.2.2, the models used in the
work described in this thesis might contain bugs and do not describe all relevant 
details of the hardware (e.g. possible overspecification of the order of NIC 
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operations, and omitted cache behavior). This means that formal verification with 
respect to these models might not be completely accurate. Still, the models contain 
a significant amount of details. Also, in order for formal verification to be feasible, 
the software design must be carefully prepared and it must be accurately 
implemented. This means that even if no formal verification is performed, the 
carefully prepared design and its accurate implementation themselves improve the 
correctness of the system compared to if no formal verification is planned.

Constructing completely accurate hardware models is extremely difficult due to the
significant amount of non-trivial details, and the lack of information given from 
hardware specifications. To construct completely accurate hardware models, it 
would probably be necessary to use automatic tools that produce models from the 
hardware description language code specifying the implementation of the 
hardware. However, such models might be too detailed, causing the formal 
verification task to consider irrelevant details, and therefore be unnecessarily 
laborious.

There are other potential details that formal verification might overlook. Bugs 
might exist in: models, verification tools (e.g. theorem prover), assembler, linker, 
loader and hardware. Additional errors can occur during operation, such as 
breaking components and transient errors in hardware. For practical reasons, 
certain less critical software components might not be verified, such as interrupt 
handlers in this context of signed Linux code execution, leaving additional 
verification gaps. For these reasons, the expression “high reliability” is used above 
in the conclusion that only signed Linux code is executed.

If the hypervisor and the monitor were not to be formally verified, then the 
development would have consisted only of reading hardware specifications, 
designing the software, implementing the software, and testing the software. 
Considering the additional tasks related to formal verification, (i) if considered 
needed, addressing the potential errors mentioned in the previous paragraph, (ii) 
constructing models, (iii) devising a proof plan, and (iv) implementing the proof 
plan, significant efforts are needed to construct highly reliable systems by means of
formal verification, and theorem proving in particular.  Hence, constructing highly 
reliable computer systems is extremely time consuming, and thus extremely 
expensive.

8.3 Sustainable Development and Ethics
As has been reported in the media, the global environment is negatively affected by
the modern life style people commonly have today. It has also been reported about 
peoples’ psychological unhealthiness. It is therefore relevant to consider 
sustainable development and ethics in the context of the work described in this 
thesis. Regarding sustainable development, three aspects are relevant to consider:

• Social sustainability: How can the work described in this thesis affect the 
needs of the world’s population? As discussed above, this work can be used
to improve the reliability and security of certain critical systems used by 
society. This work can also be used to prevent malicious programs in 
people’s home appliances relieving people from worrying about malicious 
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programs destroying or disclosing their private data. Hence, this work can 
be used to better satisfy the needs of the world’s population.

• Ecological sustainability: How can the work described in this thesis affect 
the global environment? Since this work is intended to be used in electronic
devices, this question is mostly relevant for manufacturers and consumers 
of those devices. Questions relevant for manufacturers are which raw 
materials are used, how those materials are retrieved, and whether those 
materials are recyclable. For consumers the main question is whether the 
devices are driven by renewable energy. However, the extra software 
overhead due to the hypervisor and the monitor might increase the power 
consumption, which is not a problem if the devices are driven by renewable
energy. Economical sustainability is therefore not relevant for this work.

• Economical sustainability: Can the work described in this thesis make the 
economical development in industry negatively affect society and the 
global environment? To answer this question, it is considered what 
economical investments are made to build products with this work. It is 
important that companies do not buy products and services from 
subcontractors and other companies that exploit people and the 
environment. Such actions can negatively impact peoples’ mental health, 
their economical situation, and the environment. The answer to this 
question is controlled by industry since these decisions do not depend on 
this work. Economical sustainability is therefore not relevant for this work.

The ethical aspects are partly discussed in the previous item bullet list. However, 
the intention of this work and its applicability within PROSPER is good: To protect
society from harmful computer attacks, and to demonstrate how secure computer 
systems can be constructed. Two potential ethical aspects are considered. First, 
formal verification is a rigorous method to analyze systems and therefore can be 
used to find security flaws in systems. The information in this thesis might 
therefore provide knowledge to attackers of how they can analyze systems to find 
security flaws in systems they want to attack. This sounds far-fetched, but unlikely 
incidents have happened in the past.

Second, users of products built with the work presented in this thesis might not be 
correctly informed of what has been verified or what formal verification means. 
Formal verification of that the hypervisor and the monitor ensures that only signed 
Linux code is executed might easily be translated by sellers to that the system has 
been proved to completely resist viruses. Non-technical users might then believe 
that the system is completely correct and never crashes, which is not the case. Also,
to minimize overhead, instead of an implementation in the monitor of a 
cryptographically secure hash algorithm, a simple signature scheme or virus 
scanner might be used. Such simpler implementations could give end users a false 
sense of security.

8.4 Future work
Section 8.1 describes some future work within PROSPER with respect to the work 
described in this thesis, and Section 8.2 mentions some potential issues to attack 
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for decreasing the verification gap. This section summarizes some other interesting
future work.

The current NIC model describes interrupts as occurring non-deterministically. The
NIC model might have to be extended to describe interrupts as occurring 
deterministically in case some properties are desirable to prove that depend on 
interrupts. Section C.10 describes which NIC registers the NIC model must include
in order to describe interrupts as occurring deterministically.

Currently, the hypervisor does not allow Linux to use the system DMA controller 
nor the USB controller, since these I/O devices can access memory and the 
hypervisor has no support for configuring these I/O devices. Similarly to the NIC, 
these I/O devices are also configured through registers mapped into the virtual 
address space. The hypervisor can therefore protect the registers of these I/O 
devices that affect memory accesses similarly to how the hypervisor protects the 
registers of the NIC that affect memory accesses. That is, the hypervisor configures
the page tables to prevent the CPU from writing those registers when the CPU is in
non-privileged mode. When a data abort exception occurs due to a write to those 
registers, the data abort exception handler checks whether the write is secure. If the
write is secure, then it is re-executed and otherwise not. The software design of the 
NIC register write request handlers therefore illustrates how these additional I/O 
devices can be supported and can thus be used as a starting point for implementing 
support for them. Such support would allow Linux to access any kind of I/O device
connected to the AM335x system-on-chips from Texas Instruments (the chip 
containing the CPU and all I/O device controllers on BeagleBone Black). If the 
Linux 3.10 kernel has support for the system DMA and USB controllers, then such 
a system with the hypervisor, the monitor and Linux would have any capabilities as
any other generic embedded system has. Such a system would then be useful in 
numerous applications making it competitive.

It is also interesting to port the hypervisor to other development boards, such as the
Raspberry Pi boards, which also use ARMv7 CPUs. In the ARM architecture, 
registers of I/O devices are accessed by means of CPU instructions reading from or
writing to the virtual address space. Hence, the hypervisor can support I/O devices 
accessing memory on other development boards similarly to how the hypervisor 
supports the NIC on BeagleBone Black.
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Appendix A Pseudocode Notation
This appendix describes the pseudocode that is used to define the NIC model, NIC 
register write request handlers, functions used to define the top-level lemmas, and 
functions used to define SEC.

A.1 Numbers
Binary and hexadecimal numbers have the prefixes 0b and 0x. The underscore 
symbel '_' is used to ease the interpretation of long numbers, like 0x4A10_2000.

A.2 Sets and Types
A data type exactly the same meaning as a set. A variable that has a certain type 
contains a value that belongs to the set represented by that type. The primitive data 
types are:

• const: Denotes an arbitrary symbolic string. The declaration 'const: usr' 
makes the string 'usr' a symbolic constant which can be used for 
comparisons, for instance. 

• nat  {n | n ≥ 0}≝

• bool  {false, true}≝

• wordx  {0, 1}≝ x: Denotes set of all bit strings of length x.

Other types can be defined by means of already defined types. Such types are sets, 
functions, tuples, records, unions and lists. Let t1, ..., tn be already defined types, 
then these six types can be defined as:

• Set: 's = {t1}' means s  {A | A  t1}. Let s = {nat}, s: v := {0, 1231, 559} ≝ ⊆
means then that the variable v is of type {nat} and contains the numbers 0, 
1231, and 559. 

• Function: 'f = t1 → t2' means f: t1 → t2. Let f = word2 → word1, f: v 
means then that v takes one 2-bit string as argument and returns a single bit 
value. For instance:

v(0b00) = 0b0, v(0b01) = 0b1, v(0b10) = 0b1, v(0b11) = 0. 

• Tuple: 't = (t1, ..., tn)' means t  t1 ... tn. Let t = (nat, bool), t: v means ≝ ⨯ ⨯
then that v has a natural number in its first component and boolean value in 
its second component. For instance, t: v := (7, false).

• Record: 'r = (t1: v1, ..., tn: vn)' means r  t1 ... tn but with the ability to ≝ ⨯ ⨯
refer to a component by means of its variable name and the dot operator '.'. 
For instance, r = (bool: b, nat: n), r: v := (false, 3), implies v.b = false and 
v.n = 3. 

• Union: 'u = t1  ∪ t2' means u  t1  t2. Let u = nat  {const: } and u: v. v ≝ ∪ ∪ ⊥
can then not only be set to contain a natural number, but also be set to 
contain the symbol .⊥
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• List: 'l = [t1]' defines the type l as a list with elements of type t1. If l = [nat],
then l: v := [0, 1, 2, 3] means that v is a variable that contains an ordered 
list of natural numbers.

A.3 Operators
A data type exactly the same meaning as a set. A variable that has a certain type 
contains a value that belongs to the set represented by that type. The primitive data 
types are:

• const: Denotes an arbitrary symbolic string. The declaration 'const: usr' 
makes the string 'usr' a symbolic constant which can be used for 
comparisons, for instance. 

• nat  {n | n ≥ 0}≝

• bool  {false, true}≝

• wordx  {0, 1}≝ x: Denotes set of all bit strings of length x.

Other types can be defined by means of already defined types. Such types are sets, 
functions, tuples, records, unions and lists. Let t1, ..., tn be already defined types, 
then these six types can be defined as:

• Set: 's = {t1}' means s  {A | A  t1}. Let s = {nat}, s: v := {0, 1231, 559} ≝ ⊆
means then that the variable v is of type {nat} and contains the numbers 0, 
1231, and 559. 

• Function: 'f = t1 → t2' means f: t1 → t2. Let f = word2 → word1, f: v 
means then that v takes one 2-bit string as argument and returns a single bit 
value. For instance:

v(0b00) = 0b0, v(0b01) = 0b1, v(0b10) = 0b1, v(0b11) = 0. 

• Tuple: 't = (t1, ..., tn)' means t  t1 ... tn. Let t = (nat, bool), t: v means ≝ ⨯ ⨯
then that v has a natural number in its first component and boolean value in 
its second component. For instance, t: v := (7, false).

• Record: 'r = (t1: v1, ..., tn: vn)' means r  t1 ... tn but with the ability to ≝ ⨯ ⨯
refer to a component by means of its variable name and the dot operator '.'. 
For instance, r = (bool: b, nat: n), r: v := (false, 3), implies v.b = false and 
v.n = 3. 

• Union: 'u = t1  ∪ t2' means u  t1  t2. Let u = nat  {const: } and u: v. v ≝ ∪ ∪ ⊥
can then not only be set to contain a natural number, but also be set to 
contain the symbol .⊥

• List: 'l = [t1]' defines the type l as a list with elements of type t1. If l = [nat],
then l: v := [0, 1, 2, 3] means that v is a variable that contains an ordered 
list of natural numbers.
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A.4 Functions
The body S of pseudocode functions is defined by means of the following 
pseudocode statements:

• Variable declaration: 't: v1, … vn'. Declares the variables v1, …, vn to be of
type t. The scope of the variables are with respect to the block in which 
they are declared.

• Variable declaration with assignment: 't: v := value'. nat: v := 0 initialized 
the variable v to zero. Another example is:

'{const: linux, hypervisor, monitor}: software:= {linux}',

which declares the variable software as being able to contain a set with the 
elements 'linux', 'hypervisor' and 'monitor', and is initialized to only contain
the element 'linux'.

• Type definition: Is done as described above if the type is desired to be 
referred to by a single identifier, like t = (t1, ..., tn) for the tuple type with 
components whose values are of the types t1, ..., tn. The type can also be 
defined when the variable is declared as with {bool}: b := {true}.

• Assignment: 'v := exp'. Assigns the value of the expression exp to the 
variable v. Expressions are computed by means of the operators in the 
previous section.

• Assignment with operator: ':' op '='. The values of the left and right 
arguments are operated upon by the operation op  {+, -, *, /, &, |} and the ∈
result is then assigned to the variable of the left argument. For instance, if 
word4: a = 0b1100 and word4: b = 0b0011, then the operation a :|= b will 
assign a the value 0b1111.

• Record component access: '.'. (See example in Section A.2 for record type 
definition.)

• Composition: One statement occurs after another by separating them by a 
new line.

• If statements: All sorts exists:

◦ if condition then S

◦ if condition then S else S1

◦ if condition then S else if S1 ... else if S2

◦ if condition then S else if S1 ... else Sn,

where condition is a boolean expression and S, S1, S2 and Sn are 
statements generated by the rules in this list.

• Indentation: The block of an if statement is defined by indentation. For 
instance, 
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if a > b then 
c := 1
d := 2

means that if a is greater than b, then are c and d assigned the values 1 and 
2, respectively.

if a > b then 
c := 1

d := 2

means that if a is greater than b, then is c assigned the value 1. d is always 
assigned the value 2 irrespectively of the relationship between a and b.

• Returning function result 'return exp': The function with the return 
statement computes the value of the expression exp. Code following the 
return statement of the function is ignored.

• One line comments '//''. '//Comments' is a comment.

• Comments can also be surrounded by '/*' and '*/'. '/* This is a comment */' 
is a comment.

A function f with return type t and which takes n arguments of types t1, …, tn is 
defined as: 

t: f(t1: arg1, ..., tn: argn) 
S

where the statement S is constructed according to the rules above. In classic 
mathematical notation: f: t1 ... tn → t. ⨯ ⨯

An example is: 

nat: increment_function(nat: value)
return value + 1

(nat, word32): example_function(nat: arg1, word32: arg2, word32: bits)
if arg1 = 0 then

return (0, arg2)
else

arg1 :+= increment_function(arg1)
bits :|= bits << arg1
return (arg1, bits)

Two functions are defined. increment_function return its argument incremented by 
one. example_function has three arguments with the types nat, word32 and 
word32, and returns a pair where the first component is a natural number and its 
second component a 32-bit bit string. If the first argument is zero, then 
example_function returns the pair with both components being equal to zero. 
Otherwise is the function increment_function applied on arg1 and increments arg1 
with the returned value. Then it shifts bits left by the number of bit positions being 
equal to the content of arg1, performs bitwise OR with that left shift result and the 
current value of bits. That result is then stored in bits. Finally, arg1 and bits are 
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returned as a pair. For instance, example_function(2, 0b10101010, 0b0110) returns 
(5, 0b011000110).
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Appendix B Memory and NIC Handlers
This appendix describes some details that are related to the ideal model. The first 
section provides a formal definition of the ideal state, denoted as ideal_state. The 
second section describes the memory mapping request handlers in a more formal 
way, while the third section includes the pseudocode for the representative NIC 
register write request handlers and how they are applied when a data abort 
exception occur. This third section therefore provides an overview of the structure 
of how the NIC register write request handlers operate. The fourth section 
illustrates what kind of challenges that are encountered when Lemma V is to be 
proved for the NIC register write request handlers. This is done by describing how 
Lemma V can be proved for the most complex handler cppi_ram_handler by 
considering a computation path that contains a special case. The last section 
motivates why the oracle in the ideal model is atomic, which is a justified question 
considering what was presented in the fourth section.

B.1 Formal Definition of Ideal State
This section contains the formal definition of the ideal state. Since it is just an 
extension of the real state, by including the oracle variables, are the cpu, memory 
and nic components defined as for the real state. The comments describe how the 
oracle state shall be initialized. The definition follows the pseudocode notation in 
Appendix A and is as follows.
ideal_state = (

cpu_state: cpu,
word32 → word8: memory,
nic_state: nic,
oracle_state: oracle

)

oracle_state = (
bool: kernel_running //Initialized to true. True if the Linux kernel is running (not Linux application).
bool: initialized, //Initialized to true. True if initialization process of the NIC has completed and is idle.
bool: tx0_hdp_initialized,  //Initialized to true. True if the NIC has been reset and TX0_HDP is zeroed.
bool: rx0_hdp_initialized,  //Initialized to true. True if the NIC has been reset and RX0_HDP is zeroed.
bool: tx0_cp_initialized,  //Initialized to true. True if the NIC has been reset and TX0_CP is zeroed.
bool: rx0_cp_initialized,  //Initialized to true. True if the NIC has been reset and RX0_CP is zeroed.
bool: tx0_tearingdown,  //Initialized to false. If false, then is the transmission teardown process idle.
bool: rx0_tearingdown,  //Initialized to false. If false, then is the reception teardown process idle.
word32: tx0_active_queue, //Initialized to zero. All transmission descriptors in use by the NIC is in this queue.
word32: rx0_active_queue, //Initialized to zero. All reception descriptors in use by the NIC is in this queue.
word11 → bool: α, //Initialized to zero. α(w) is true if the wth word of CPPI_RAM is used by the NIC.
word11 → word32: recv_bd_nr_blocks, //Initialized to zero. Number of blocks that can be written by a descriptor.
word20 → word32: ρNIC, //Initialized to zero. Number of descriptors that can write the block bl.
word20 → {L1, L2, D, MN, N, }⊥ : τ, //Initial value depends on initial memory mapping. Maps a block index to type.
word20 → word32: ρex, //Initialized according to initial memory mapping. Number of ex entries of a block.
word20 → word32: ρwt, //Initialized according to initial memory mapping. Number of wt entries of a block.
{wordx}: GI, //Set of signatures that represent secure block content.
word32768 → wordx: sign //The signature function that is used to compute the signature of the content of a block.

)

B.2 Memory Mapping Request Handlers
The following subsections presents and describes the requirements, including the 
NIC extensions, of the memory mapping request handlers for accepting memory 
mapping requests issued by Linux, and how these handlers update the ideal state. It
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is upon these formal requirements and state updates that it has been reasoned that 
the memory mapping request handlers preserve S. Also worth to mention is that 
mapL1/mapL2 and createL1/createL2 might communicate with the NIC to update 
ρNIC to get an accurate view of which blocks the NIC might write, in order to not 
reject requests that are actually valid.

B.2.1 Switch

switch(i, bl) makes the MMU start its translation table walks from the block bl by 
setting TTBR0 to point to bl.

The requirements are that bl is of type L1 and that bl maps the code of the 
hypervisor and the monitor as expected:

i.oracle.τ(bl) = L1 ∧
[∀s  ideal_state.∈

s.memory = i.memory  ∧ s.cpu.cp15.DACR = i.cpu.cp15.DACR ∧
s.cpu.cp15.TTBR0[31:12] = bl
⇒
HVM_MAP(s)].

HVM_MAP is defined in Subsection D.3.4. The state s is equal to i with respect to 
the state components that are relevant for the mmu function except for TTBR0. 
TTBR0 is set to the new block bl in the state s to check that the MMU performs the 
hypervisor and monitor memory mappings as expected after TTBR0 has been set to
bl in the state i.

switch is defined as:

(ideal_state, bool): switch(ideal_state: i, word20: bl):
i.cpu.cp15.TTBR0[31:12] := bl.

B.2.2 freeL1 and freeL2

freeL1(i, bl) and freeL2(i, bl) changes the type of bl to D. The requirements of 
freeL1 and freeL2 are:

• For freeL1: bl is of type L1 and not pointed to by TTBR0:

i.oracle.τ(bl) = L1  ∧ i.cpu.cp15.TTBR0[31:12] ≠ bl.

• For freeL2: bl is of type L2 and not linked by an L1 block:

i.oracle.τ(bl) = L2 ∧
[¬∃pt  word20.∈

i.oracle.τ(pt) = L1  [∧ ∃pte  ∈ L2_LINK(i, pt). pte[31:12] = bl]].

L2_LINK(i, pt) returns the list of all second-level link entries in the first-level page 
table block pt. freeL1 and freeL2 are defined as follows:

(ideal_state, bool): freeL1(ideal_state: i, word20: bl):
i.oracle.τ(bl) := D
i := decrement(i, PTL1(i, bl), length(PTL1(i, bl)))
return i
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(ideal_state, bool): freeL2(ideal_state: i, word20: bl):
i.oracle.τ(bl) := D
i := decrement(i, PTL2(i, bl), length(PTL2(i, bl)))
return i.

The type of the block bl is set to D, and for each block that bl maps as executable 
or writable is the reference counter ρex and ρwt decremented by one, respectively. 
PTL1 and PTL2 are defined in Section D.1 (return the list of which access rights 
each block that is mapped by bl has), and decrement is defined as follows:

ideal_state: decrement(ideal_state: i, [(word20, bool, bool, bool)] l, nat: j):
if j = 0 then

return i
else

(word20: pb, bool: rd, bool: wt, bool: ex) := l[j – 1]
if ex then i.oracle.ρex(pb) :–= 1
if wt then i.oracle.ρwt(pb) :–= 1
return decrement(i, l, j – 1).

B.2.3 unmapL1 and unmapL2

unmapL1(i, bl, e) and unmapL2(i, bl, e) free the entry with index e in the L1/L2 
block with index bl.(There are 1024 entries of four bytes each in a 4 kB block, 
indexed from 0 to 1023, inclusive.) The requirements of unmapL1 and unmapL2 
are:

• The block bl is of type L1/L2 and is not executable:

i.oracle.τ(bl) = L1/L2  ∧ i.oracle.ρex(bl) = 0.

This requirement prevents the oracle from inserting unsigned code into 
potential page tables that are executable.

• If bl is currently being used by the MMU, then the freed entry e must not 
change the hypervisor and monitor memory mappings. That is, virtual 
addresses belonging to the hypervisor or the monitor are still mapped to 
their expected physical addresses:

∀s  ideal_state.∈
[∀bl'  word20. ∈ bl' ≠ bl  ⇒ content(s, bl') = content(i, bl')] ∧
[ 0 ≤ ∀ j < 4096.

j ≠ 4⋅e  ⇒ s.memory(bl :: 012 + j) = i.memory(bl :: 012 + j)] ∧
s.memory(bl :: 012 + 4⋅e) & 0b11 = 0b00 ∧
s.cpu.cp15.TTBR0[31:12] = i.cpu.cp15.TTBR0[31:12] ∧
s.cpu.cp15.DACR = i.cpu.cp15.DACR
⇒
HVM_MAP(s).

The only difference between s and i, with respect to the operation of the 
MMU, is the entry e of the block bl, which is free in the state s, as stated by
the third conjunct.
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unmapL1 and unmapL2 free the entry e of the block bl and decrement the reference
counters ρwt and ρex by one for each block that gets unmapped:

(ideal_state, bool): unmapL1(ideal_state: i, word20: bl, word10: e):
i.memory(bl :: 012 + 4⋅e) := 0
i := decrement(i, PTEL1(i, bl, e), length(PTEL1(i, bl, e)))
return i

(ideal_state, bool): unmapL2(ideal_state: i, word20: bl, word10: e):
i.memory(bl :: 012 + 4⋅e) := 0
i := decrement(i, PTEL2(i, bl, e), length(PTEL2(i, bl, e)))
return i,

where PTEL1/PTEL2(i, bl, e) returns the list of blocks with their access rights that 
are mapped by the entry e in the page table block bl in the state i:

[(word20, bool, bool, bool)]: PTEL1/PTEL2(ideal_state: i, word20: bl, word32: e).

PTEL1 returns 256 entries since first-level entries map 1 MB of memory, or 256 
consecutive 4 kB memory blocks, while PTEL2 returns only one entry since 
second-level entries map 4 kB memory blocks. PTEL1 and PTEL2 return the 
empty list if the entry is already free.

B.2.4 linkL1

linkL1(ideal_state: i, word20: bl, word10: e, word20: bl') sets entry e of the L1 
block bl to point to the second-level page table in the L2 block bl'. The 
requirements of linkL1 are:

• bl is of type L1 and not executable, and bl' of type L2:

i.oracle.ρex(bl) = 0  ∧ i.oracle.τ(bl) = L1  ∧ i.oracle.τ(bl') = L2.

• Hypervisor and monitor memory is mapped as expected:

∀s  ideal_state.∈
[∀bl''  word20. ∈ bl'' ≠ bl  ⇒ content(s, bl'') = content(i, bl'')] ∧
[ 0 ≤ ∀ j < 4096.

j  [4∉ ⋅e, 4⋅e + 3]  ⇒ s.memory(bl :: 012 + j) = i.memory(bl :: 012 + j)] 
∧
s.memory(bl :: 012 + 4⋅e + 3) = bl'[19:12] ∧
s.memory(bl :: 012 + 4⋅e + 2) = bl'[11:4] ∧
s.memory(bl :: 012 + 4⋅e + 1)[7:2] = bl'[3:0] :: 02 ∧
s.memory(bl :: 012 + 4⋅e)[1:0] = 0b01 ∧
s.cpu.cp15.TTBR0[31:12] = i.cpu.cp15.TTBR0[31:12] ∧
s.cpu.cp15.DACR = i.cpu.cp15.DACR
⇒
HVM_MAP(s).

This formula requires that all state components of s and i that affect the 
operation of the MMU to be equal, except for the entry e of the block bl, 
which is set to point to the second-level page table block bl'. Since bl' is a 4
kB block, and second-level entries can point to page tables of 1 kB, are the 
two least significant bits of the second-level entry zeroed in the fifth 
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conjunct. Bit one and zero of a page table entry must be set to zero and one,
respectively, to inform the hardware that the entry is a second-level link.

linkL1 is defined as:

(ideal_state, bool): linkL1(ideal_state: i, word20: bl, word10: e, word20: bl'):
if i.memory(bl :: 012 + 4⋅e)[1] = 1 then

i := decrement(i, PTEL1(i, bl, e), length(PTEL1(i, bl, e)))
i.memory(bl :: 012 + 4⋅e + 3) := bl'[19:12]
i.memory(bl :: 012 + 4⋅e + 2) := bl'[11:4]
i.memory(bl :: 012 + 4⋅e + 1)[7:2] := bl'[3:0] :: 02

i.memory(bl :: 012 + 4⋅e)[1:0] := 0b01
return i.

If the entry e is already mapping blocks, and that mapping gives executable or 
writable access, then the mapped blocks gets their entries in ρex and ρwt 
decremented by one, and entry e of the L1 block bl is set to point to the second-
level page table in the L2 block bl'. Bits eight to five must also be set to specify the
domain. That value depends on whether the memory that is mapped by the block 
bl' belongs to the hypervisor, the monitor or Linux. That is left unspecified.

B.2.5 mapL1 and mapL2

mapL1(i, bl, e, bl', rd, wt, ex) and mapL2(i, bl, e, bl', rd, wt, ex) maps entry e of the 
L1/L2 block bl to the block bl' with the access permissions as specified by the 
arguments rd, wt and ex. The requirements are:

• The block bl is of type L1/L2 and is non-executable:

i.oracle.τ(bl) = L1/L2  ∧ i.oracle.ρex(bl) = 0.

• All mapped blocks bl'' (first-level page tables map 256 consecutive blocks 
starting from bl', where bl'' is referred to as bl' + j below) that refer to 
hypervisor or monitor memory are inaccessible:

◦ For mapL1:

∀j  word8. ∈ bl' + j  ∈ HYP_BL  ∪ MON_BL  ¬⇒ rd  ¬∧ wt  ¬∧ ex.

◦ For mapL2:

bl'  ∈ HYP_BL  ∪ MON_BL  ¬⇒ rd  ¬∧ wt  ¬∧ ex.

HYP_BL contains all block indexes that are allocated to the hypervisor, 
including code an data, and similarly for MON_BL for the monitor.

• If executable access permission is requested, then all mapped blocks bl'' 
contain signed code:

◦ For mapL1:

∀j  word8. ∈ ex  ⇒ i.oracle.sign(content(i, bl' + j))  ∈ i.oracle.GI.

◦ For mapL2:

ex  ⇒ i.oracle.sign(content(i, bl'))  ∈ i.oracle.GI.
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• All mapped blocks bl'' must belong to valid memory (hypervisor, monitor 
or Linux memory or NIC registers), the requested access permissions must 
not be both executable and writable or be in conflict with any other page 
table entry of any L1/L2 block (including bl), and if writable access 
permission is requested then all mapped blocks must be of type D:

◦ For mapL1:

∀j  word8.∈
bl' + j  ∈ HYP_BL  ∪ MON_BL  ∪ LINUX_BL  ∪ NIC_BL ∧
(ex  ¬⇒ wt  ∧ i.oracle.ρwt(bl' + j) = 0) ∧
(wt  ¬⇒ ex  ∧ i.oracle.ρex(bl' + j) = 0  ∧ i.oracle.τ(bl' + j) = D).

◦ For mapL2:

bl'  ∈ HYP_BL  ∪ MON_BL  ∪ LINUX_BL  ∪ NIC_BL ∧
(ex  ¬⇒ wt  ∧ i.oracle.ρwt(bl') = 0) ∧
(wt  ¬⇒ ex  ∧ i.oracle.ρex(bl') = 0  ∧ i.oracle.τ(bl') = D).

Where LINUX_BL contains the block indexes of all blocks that are 
allocated to Linux, and NIC_BL = {0x4A100, 0x4A101, 0x4A102, 
0x4A103} contains the block indexes of the NIC registers. This 
requirement prevents Linux from writing unsigned code into executable 
blocks, potential page tables or outside Linux RAM.

• If the L1/L2 block bl is currently being used by the MMU, then the memory
mappings of the hypervisor and the monitor must be as expected:

◦ For mapL1:

∀s  ideal_state.∈
[∀bl''  word20. ∈ bl'' ≠ bl  ⇒ content(s, bl'') = content(i, bl'')] ∧
[ 0 ≤ ∀ j < 4096.

j  [4∉ ⋅e, 4⋅e + 3]
⇒
s.memory(bl :: 012 + j) = i.memory(bl :: 012 + j)] ∧

s.memory(bl :: 012 + 4⋅e + 3) = bl'[19:12] ∧
s.memory(bl :: 012 + 4⋅e + 2)[7:4] = bl'[11:8] ∧
s.memory(bl :: 012 + 4⋅e)[1] = 0b1 ∧
s.cpu.cp15.TTBR0[31:12] = i.cpu.cp15.TTBR0[31:12] ∧
s.cpu.cp15.DACR = i.cpu.cp15.DACR
⇒
HVM_MAP(s).

The 20 least significant bits of the entry e of block bl in this formula 
(except for bit one to specify that 1 MB block of memory is mapped, 
and because of that are only the 12 most significant bits needed) are 
unspecified for simplicity but should specify the access permissions 
according to rd, wt and ex.

◦ For mapL2: Similar as for mapL2 but with the 20 most significant bits 
of the entry set to bl':
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s.memory(bl :: 012 + 4⋅e + 3) = bl'[19:12] ∧
s.memory(bl :: 012 + 4⋅e + 2) = bl'[11:4] ∧
s.memory(bl :: 012 + 4⋅e + 1)[7:4] = bl'[3:0].

Requirements related to the NIC:

• If the mapped blocks bl'' correspond to NIC registers, then must the access 
permissions be non-executable, and if they correspond to registers that 
affect which memory accesses the NIC does, then must the access 
permissions be non-writable:

◦ For mapL1:

[∀j  word8.∈
bl' + j  {0x4A100, 0x4A101, 0x4A102, 0x4A103}  ¬∈ ⇒ ex] ∧

[∀j  word8. ∈ bl' + j  {0x4A100, 0x4A102, 0x4A103}  ¬∈ ⇒ wt].

◦ For mapL2:

bl'  {0x4A100, 0x4A101, 0x4A102, 0x4A103}  ¬∈ ⇒ ex] ∧
bl'  {0x4A100, 0x4A102, 0x4A103}  ¬∈ ⇒ wt].

This requirement prevents Linux from executing unsigned code, by 
interpreting NIC registers as instructions that can be modified arbitrarily by
the NIC. Also, Linux cannot configure the NIC to enter an insecure state.

• If executable permission is requested then the blocks bl'' must not be 
accessed by any receive buffer descriptor in the queue pointed to by 
i.oracle.rx0_active_queue:

◦ For mapL1:

∀j  word8. ∈ ex  ⇒ i.oracle.ρNIC(bl' + j) = 0.

◦ For mapL2:

ex  ⇒ i.oracle.ρNIC(bl') = 0.

This prevents the NIC from writing unsigned code in executable blocks.

The operations performed by mapL1 are:

(ideal_state, bool): mapL1(ideal_state: i, word20: bl, word10: e, word20: bl',
bool: rd, bool: wt, bool: ex):

if i.memory(bl :: 012 + 4⋅e)[1] = 1 then
i := decrement(i, PTEL1(i, bl, e), length(PTEL1(i, bl, e)))

i.memory(bl :: 012 + 4⋅e + 3) := bl'[19:12]
i.memory(bl :: 012 + 4⋅e + 2)[7:4] := bl'[11:8]
i.memory(bl :: 012 + 4⋅e)[1] := 0b1
i := increment(i, PTEL1(i, bl, e), length(PTEL1(i, bl, e)))
i := set_type_D(i, bl', 256)
return i,

where increment increments the reference counters ρwt and ρex for all blocks that 
are now mapped as writable and executable, respectively:
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ideal_state: increment(ideal_state: i, [(word20, bool, bool, bool)] l, nat: j):
if j = 0 then

return i
else

(word20: pb, bool: rd, bool: wt, bool: ex) := l[j – 1]
if ex then i.oracle.ρex(pb) :+= 1
if wt then i.oracle.ρwt(pb) :+= 1
return increment(i, l, j – 1),

and set_type_D sets all blocks that are currently typed as  as ⊥ D blocks, except for
hypervisor and monitor blocks:

ideal_state: set_type_D(ideal_state: i, word20: bl', nat: j):
if j = 0 then

return i
else if ¬(bl' + j – 1  ∈ HYP_BL  ∪ MON_BL)  ∧ i.oracle.τ(bl' + j – 1) = ⊥

i.oracle.τ(bl' + j – 1) := D
return set_type_D(i, bl', j – 1).

Again, the setting of access permissions and other management bits are omitted for
simplicity. The operations of mapL2 are:

(ideal_state, bool): mapL2(ideal_state: i, word20: bl, word10: e, word20: bl',
bool: rd, bool: wt, bool: ex):

if i.memory(bl :: 012 + 4⋅e)[1] = 1 then
i := decrement(i, PTEL2(i, bl, e), length(PTEL2(i, bl, e)))

i.memory(bl :: 012 + 4⋅e + 3) := bl'[19:12]
i.memory(bl :: 012 + 4⋅e + 2) := bl'[11:4]
i.memory(bl :: 012 + 4⋅e + 1)[7:4] := bl'[3:0]
i.memory(bl :: 012 + 4⋅e + 0)[1] := 0b1
i := increment(i, PTEL2(i, bl, e), length(PTEL2(i, bl, e)))
i := set_type_D(i, bl', 1)
return i.

B.2.6 createL1 and createL2

createL1(i, bl) and createL2(i, bl) makes the block bl of type L1 or L2, 
respectively, by validating their page table entries. Their requirements are:

• The block bl is of type D and is not writable to prevent Linux from 
changing access rights:

i.oracle.τ(bl) = D  ∧ i.oracle.ρwt(bl) = 0.

Requiring that bl is of type D has no practical limitations since making an 
L1 block an L1 block makes no difference, and switching types of L1 and 
L2 blocks makes no sense since L1 and L2 blocks have different page table 
entry formats.

• All blocks that map to hypervisor or monitor memory are mapped as 
inaccessible:
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∀(bl', rd, wt, ex)  ∈ PTL1/PTL2(i, bl).
bl'  ∈ HYP_BL  ∪ MON_BL  ¬⇒ rd  ¬∧ wt  ¬∧ ex.

• All second-level entries must link to L2 blocks:

L2_ENTRY_L2_BL(i, bl).

L2_ENTRY_L2_BL is defined in Subsection D.3.2.

• For each mapped block bl' that is requested to be executable, it must 
contain signed code:

∀(bl', rd, wt, ex)  ∈ PTL1/PTL2(i, bl).
ex  ⇒ i.oracle.sign(content(i, bl'))  ∈ i.oracle.GI.

• For each mapped block bl', it must belong to a valid memory region and not
be both executable and writable or be in conflict with any other page table 
entry of any other L1/L2 block, and if writable access permission is 
requested then it must be of type D:

(∀ bl', rd, wt, ex)  ∈ PTL1/PTL2(i, bl).
bl'  ∈ HYP_BL  ∪ MON_BL  ∪ LINUX_BL  ∪ NIC_BL ∧
(ex  ¬⇒ wt  i.∧ oracle.ρwt(bl') = 0) ∧
(wt  ¬⇒ ex  ∧ i.oracle.ρex(bl') = 0  ∧ i.oracle.τ(bl') = D).

• No pair of entries in bl are in conflict with each other with respect to the 
write and execute permissions:

(∀ pb, rd, wt, ex)  ∈ PTL1/PTL2(i, bl).
¬ (∃ pb', rd', wt', ex')  ∈ PTL1/PTL2(i, bl).

pb' = pb  (∧ ex  ∧ wt'  ∨ ex'  ∧ wt).

• If the block bl maps itself, then it must not be writable:

(∀ bl', rd, wt, ex)  ∈ PTL1/PTL2(i, bl). bl' = bl  ¬⇒ wt.

Requirements related to the NIC:

• The new L1/L2 block bl cannot be referred to by any receive buffer 
descriptor or correspond to NIC registers:

i.oracle.ρNIC(bl) = 0  ∧ bl  ∉ NIC_BL.

This prevents the NIC from changing access permissions in potential page 
tables.

• No entry in the L1/L2 block bl can map a block bl' that corresponds to the 
NIC registers with write or execute access permission:

(∀ bl', rd, wt, ex)  ∈ PTL1/PTL2(i, bl). bl'  ∈ NIC_BL  ¬⇒ wt  ¬∧ ex.

• All blocks bl' that are mapped as executable cannot be referred to by 
receive buffer descriptors:

(∀ bl', rd, wt, ex)  ∈ PTL1/PTL2(i, bl). ex  ⇒ i.oracle.ρNIC(bl') = 0.

The operations performed by createL1 are:
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(ideal_state, bool): createL1(ideal_state: i, word20: bl):
i.oracle.τ(bl) := L1
i := increment(i, PTL1(i, bl), length(PTL1(i, bl)))
i := set_type_D_for_list(i, PTL1(i, bl), length(PTL1(i, bl)))
return i,

where set_type_D_for_list sets all blocks that are currently typed as  as ⊥ D 
blocks, except for hypervisor and monitor blocks:

ideal_state: set_type_D_for_list(ideal_state: i, [(word20, bool, bool, bool)]: l,
nat: j):

if j = 0 then
return i

else
(word32: bl, bool: rd, bool: wt, bool: ex) := l[j – 1]
if i.oracle.τ(bl) =  ⊥ ∧

¬(bl  ∈ HYP_BL  ∪ MON_BL) then i.oracle.τ(bl) := D
return set_type_D_for_list(i, l, j – 1).

(ideal_state, bool): createL2(ideal_state: i, word20: bl):
i.oracle.τ(bl) := L2
i := increment(i, PTL2(i, bl), length(PTL2(i, bl)))
i := set_type_D_for_list(i, PTL2(i, bl), length(PTL2(i, bl)))
return i.

B.3 NIC Register Write Request Handlers
This section includes pseudocode for the representative NIC Register write request 
handlers and shows their fundamental operation and how they are integrated into 
the data abort exception handler. Their auxiliary functions that deal with the deeper
details of buffer descriptors are omitted to save space. It is these formal definitions 
that have been used to reason that the NIC register write request handlers preserve 
the formal definition of S in appendix D. The pseudocode follows.
//Addresses of NIC DMA controller registers. 
word32: CPSW_CPDMA := 0x4A10_0800 
word32: TX_TEARDOWN := CPSW_CPDMA + 0x8 
word32: RX_TEARDOWN := CPSW_CPDMA + 0x18 
word32: CPDMA_SOFT_RESET := CPSW_CPDMA + 0x1C 
word32: DMACONTROL := CPSW_CPDMA + 0x20 
word32: RX_BUFFER_OFFSET := CPSW_CPDMA + 0x28 

//Addresses of NIC HDP and CP registers. 
word32: CPSW_STATERAM := 0x4A10_0A00 
word32: CPSW_STATERAM_SIZE := 0x80 
word32: TX0_HDP := CPSW_STATERAM + 0x0 
word32: RX0_HDP := CPSW_STATERAM + 0x20 
word32: TX0_CP := CPSW_STATERAM + 0x40 
word32: RX0_CP := CPSW_STATERAM + 0x60 

//Address range constants of CPPI_RAM. 
word32: CPPI_RAM := 0x4A10_2000 
word32: CPPI_RAM_SIZE := 0x2000 

//Constants related to updating transmission and reception queues. 
bool: TRANSMIT := true //Operation is with respect to the transmission queue.
bool: RECEIVE := false //Operation is with respect to the reception queue.
bool: ADD := true //Added buffer descriptors to queue.
bool: REMOVE := false //Removed buffer descriptors from queue.
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//Teardown interrupt code. 
word32: TD_INT := 0xFFFF_FFFC 

//Constants related to CPPI_RAM writes.
word32: ZEROED_NDP_OVERLAP := 0 //Writing last buffer descriptor's next descriptor pointer .
word32: ILLEGAL_OVERLAP := 1 //Writing a buffer descriptor word that is not a zeroed next descriptor pointer. 
word32: NO_OVERLAP := 2 //Writing an unused word of CPPI_RAM.

/* 
 * data_abort is the function that the ideal CPU applies when a data abort 
 * exception has occurred. When that occurs, the CPU is in abt mode and the 
 * program counter is set to 0xFFFF0010. 
 * 
 * If the accessed virtual address that generated the exception is mapped to 
 * the registers of the NIC and the Linux kernel is running, then the NIC 
 * register write request handlers checks the write request and executes it 
 * only if it is secure. If it is not secure or some other error is 
 * encountered, then is NIC register write request denied and either does 
 * Linux continue its execution from the instruction following the one that 
 * failed, or does a memory mapping request handler handle the exception. 
 * 
 * If the data abort exception was due to some other reason, then the 
 * unspecified handler handle_data_abort_exception handles that data abort 
 * exception. The handler handle_data_abort_exception is left 
 * unspecified since it is not directly security critical and just forwards 
 * the data abort exception to the data abort exception handler of the Linux 
 * kernel. 
 * 
 * This function returns the new ideal system state. 
 */ 
ideal_state: data_abort(ideal_state: i) 

if i.oracle.kernel_running then 
//Retrieves the physical address that Linux tried to write. If it 
//belongs to a NIC register, then is check_nic_access applied to handle 
//the NIC register write request. Otherwise is the data abort treated 
//as a data abort exception that shall be forwarded to Linux or to a 
//memory mapping request handler. 
word32: pa := mmu(i, PL1, i.cpu.cp15.DFAR, rd) 

if valid  0x4A10_0000 ≤ pa  pa < 0x4A10_4000 then ∧ ∧
//The flag accepted indicating whether the NIC register write 
//request was accepted or denied is unused for the moment but can 
//be used to tell if Linux is doing something strange (being under 
//attack). 
(i, bool: accepted) := check_nic_access(i, pa) 

//Restores the program counter to the instruction following the one 
//that issued the NIC register write request. 
i.cpu.uregs.r15 := i.cpu.pregs.r14_abt - 0x4 

//Restores CPSR to its value immediately before the exception 
//occurred. The mask 0xFFFFFF30 ensures that Linux executes in user 
//mode and that IRQ and FIQ interrupts are enabled. 
i.cpu.sregs.CPSR := i.cpu.sregs.SPSR_abt & 0xFFFFFF30 

//Returns the new state where Linux is ready to execute again. 
return i 

//The Linux kernel was not running or a NIC register write request was not 
//made. 
return handle_data_abort_exception(i)

/* 
 * Applies the NIC register write request handler for the NIC register that 
 * Linux tried to write at physical address pa_nic_register. This is done by 
 * first retrieving the content of the CPU register that was used by the 
 * instruction that tried to perform the store into the NIC register. Then is 
 * the handler that handles accesses to that NIC register applied. This 
 * function returns the updated ideal system state that is the result of 
 * applying the NIC register write request handler and a flag that tells 
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 * whether the NIC register write request was accepted or not (true means 
 * executed and false means rejected). 
 */ 
(ideal_state, bool): check_nic_access(ideal_state: i, word32: pa_nic_register) 

//Virtual address of instruction that raised the data abort exception. 
word32: va_instruction := i.cpu.pregs.r14_abt - 0x8 
//If the address of the instruction or the NIC register are not 32-bit word 

 //aligned, nothing is done. 
if va_instruction[1:0] ≠ 0  pa_nic_register[1:0] ≠ 0 then∨  

return (i, false) 

//Retrieves the encoding of the instruction that tried to write a NIC 
//register. 
word32: instruction_code := mmu(i, PL1, va_instruction, rd) 

//If no access is permitted to the failing instruction, nothing is done. 
if ¬valid then 

return (i, false) 

//If the instruction was not an ordinary store instruction, then nothing is 
//done. An ordinary store instruction have the following syntax: 
//STR Rt, [Rn, #+imm32] which performs the following operation: 
//mem32[Regs[Rn] + imm32] := Regs[Rt] 
if 0xFFF00000 & instruction_code ≠ 0xE5800000 then 

return (i, false) 

//Computes the register index of the register that contains the value that 
//Linux wants to write to the NIC register at physical address 
//pa_nic_register. 
word32: t =: (0x0000F000 & instruction_code) >> 12 

//Retrieves the register content that Linux used when trying to write a NIC 
//register. value is Rt above, and va is Rn added with imm. Linux tried to 
//write value to physical address pa: memory(pa) := value. 
word32: value := user_register_content(i, t) 

//Applies the handler for the specifically accessed NIC register. 
if pa_nic_register = TX_TEARDOWN then 

return tx_teardown_handler(i, value) 
else if pa_nic_register = RX_TEARDOWN then 

return rx_teardown_handler(i, value) 
else if pa_nic_register = CPDMA_SOFT_RESET then 

return cpdma_soft_reset_handler(i, value) 
else if pa_nic_register = DMACONTROL then 

return dmacontrol_handler(i, value) 
else if pa_nic_register = RX_BUFFER_OFFSET then 

return rx_buffer_offset_handler(i, value) 
else if pa_nic_register = TX0_HDP then 

return tx0_hdp_handler(i, value) 
else if pa_nic_register = RX0_HDP then 

return rx0_hdp_handler(i, value) 
else if pa_nic_register = TX0_CP then 

return tx0_cp_handler(i, value) 
else if pa_nic_register = RX0_CP then 

return rx0_cp_handler(i, value) 
else if CPPI_RAM ≤ pa_nic_register  pa_nic_register < CPPI_RAM + CPPI_RAM_SIZE then ∧

return cppi_ram_handler(i, pa_nic_register, value) 
else if CPSW_STATERAM ≤ pa_nic_register ∧

pa_nic_register < CPSW_STATERAM + CPSW_STATERAM_SIZE then 
return stateram_handler(i, value) 

else 
return write_nic_register_handler(i, pa_nic_register, value)

/* 
 * Linux wants to write TX_TEARDOWN with the value channel to teardown a NIC 
 * transmission DMA channel. 
 * 
 * value contains the ID of the transmit channel (zero to seven, inclusive) to 
 * tear down. Since only transmit channel zero is allowed to be used, value 
 * must be equal zero. If the NIC has not been initialized or an earlier 
 * transmit teardown operation has not finished, then this operation is also 
 * denied. Otherwise tx0_tearingdown is set to true since a transmit teardown 
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 * operation is to be initiated and the transmit teardown operation is 
 * initiated by actually writing channel zero's ID number to the TX_TEARDOWN 
 * register. 
 */ 
(ideal_state, bool): tx_teardown_handler(ideal_state: i, word32: channel) 

if ¬i.oracle.initialized  i.oracle.tx0_tearingdown  (channel & 0x7) ≠ 0 then ∨ ∨
return (i, false) 

else 
i.oracle.tx0_tearingdown := true 
i.nic := write_nic_register(i.nic, TX_TEARDOWN, 0) //channel = 0. 
return (i, true) 

/* 
 * Linux wants to write the CPDMA_SOFT_RESET register with the value val. 
 * Probably to reset the NIC DMA hardware logic. 
 * 
 * The main purpose of cpdma_soft_reset_handler, except from initiating the 
 * initialization process of the NIC DMA hardware, is to check that such a 
 * write does not put the NIC into a dead state. According to the NIC model 
 * definition of write_cpdma_soft_reset, the NIC enters a dead state when 
 * setting CPDMA_SOFT_RESET to one if any of the following conditions hold: 
 * -The NIC DMA hardware reset operation followed by the zeroing of the HDP 
 *  and CP registers is not complete. 
 * -The transmit or receive teardown processes are active. 
 * 
 * To prevent putting the NIC in a dead state, the two if statements are used. 
 * The first one checks if a reset operation is to be initiated. If Linux just 
 * wants to write zero, which has no effect, the handler does nothing. The 
 * second check ensures that the initialization and teardown processes are 
 * idle. This is done by using the oracle variables initialized and 
 * tx0/rx0_tearingdown which track the progress of those NIC processes. 
 * 
 * Otherwise is the initialization process of the NIC initiated and the oracle 
 * variables that track the initialization process are initialized. 
 */ 
(ideal_state, bool): cpdma_soft_reset_handler(ideal_state: i, word32: val) 

if (val & 0b1) = 0 then 
return (i, true) 

else if ¬i.oracle.initialized  i.oracle.tx0_tearingdown  i.oracle.rx0_tearingdown then ∨ ∨
return (i, false) 

else 
i.oracle.initialized := false 
i.oracle.tx0_hdp_initialized := false 
i.oracle.rx0_hdp_initialized := false 
i.oracle.tx0_cp_initialized := false 
i.oracle.rx0_cp_initialized := false 
i.nic := write_nic_register(i.nic, CPDMA_SOFT_RESET, 1) //val = 1. 
return (i, true) 

/* 
 * Linux wants to write TX0_HDP with the value bd_ptr which is the head of a 
 * buffer descriptor queue, in order to send the data buffers associated with 
 * the buffer descriptors in that queue. 
 * 
 * The argument bd_ptr contains the physical address of the first buffer 
 * descriptor in a queue that Linux wants to transmit. If initialized is 
 * false, then this tells the oracle that the initialization process of the 
 * NIC is under progress. In that case TX0_HDP is supposed to be set to zero 
 * to make the initialization process progress, but only if the hardware reset 
 * operation is complete CPDMA_SOFT_RESET is zero). 
 * 
 * If all HDP and CP registers have been initialized, then 
 * initialization_performed is called which updates ρNIC, α, and 
 * recv_bd_nr_blocks to zero for the buffer descriptors in the queue pointed 
 * to by tx0_active_queue since they are unused by the NIC after an 
 * initialization and therefore tx0_active_queue is also zeroed. 
 * 
 * If initialized is true, then it is checked that TX0_HDP is zero (otherwise 
 * it is an error to write it) and that the NIC transmit teardown process is 
 * idle since it is undefined what happens if the transmission process is 
 * started during a transmit teardown process. 
 * 
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 * Then ρNIC, α, recv_bd_nr_blocks and tx0_active_queue are 
 * updated to reflect the fact that the transmission process is idle (in the 
 * sense that all buffer descriptors in the transmission queue are released 
 * since TX0_HDP is zero) and the released buffer descriptors are inactive. 
 * Before the new queue, pointed to by bd_ptr, is allowed to start 
 * transmission it must be checked to be secure. 
 * 
 * If the new queue is secure, then tx0_active_queue is set to point to its 
 * head and ρNIC, α and recv_bd_nr_blocks are updated for the 
 * new transmit buffer descriptors. Finally TX0_HDP is written with the head 
 * of the new queue to actually start the transmission process. 
 */ 
(ideal_state, bool): tx0_hdp_handler(ideal_state: i, word32: bd_ptr) 

if ¬i.oracle.initialized then //NIC is not initialized. 
(i.nic, word32: cpdma_soft_reset) := read_nic_register(i.nic, CPDMA_SOFT_RESET) 
if cpdma_soft_reset = 1  bd_ptr ≠ 0 then∨ //Reset not complete or incorrect initialization value. 

return (i, false) 
else 

i.nic := write_nic_register(i.nic, TX0_HDP, 0) //bd_ptr = 0. 
i.oracle.tx0_hdp_initialized := true //TX0_HDP initialized. 

//Checks if all HDP and CP registers are initialized. If so, the 
//tx0/rx0_active_queue queues are emptied and related data 
//structures initialized. 
if i.oracle.rx0_hdp_initialized  i.oracle.tx0_cp_initialized  i.oracle.rx0_cp_initialized then ∧ ∧

i := initialization_performed(i) 

return (i, true) 
else //NIC is initialized. 

//If TX0_HDP is not zero or a teardown is under progress, then the NIC 
//register write request to TX0_HDP is denied. 
(i.nic, word32: tx0_hdp) := read_nic_register(i.nic, TX0_HDP) 
if tx0_hdp ≠ 0  i.oracle.tx0_tearingdown then ∨

return (i, false) 
//In this case TX0_HDP is zero and no transmission teardown is under 
//progress. tx0_active_queue and related data structures are updated to 
//reflect the current state of the NIC. That is the transmission queue 
//is empty. Then it is checked whether the new queue is secure and if 
//so, it is added to tx0_active_queue and related data structures are 
//updated. Finally TX0_HDP is set to the buffer descriptor at the head 
//of the new queue. 
else 

i := update_active_queue(i, TRANSMIT) 
(i, bool: is_queue_secure) := is_queue_secure(i, bd_ptr, TRANSMIT) 
if is_queue_secure then 

i.oracle.tx0_active_queue := bd_ptr 
i := update_ρNIC_α_queue(i, bd_ptr, TRANSMIT, ADD) 
i.nic := write_nic_register(i.nic, TX0_HDP, bd_ptr) 
return (i, true) 

else 
return (i, false) 

/* 
 * Linux wants to write TX0_CP with the value val to acknowledge a 
 * frame transmission completion interrupt or a transmission teardown 
 * interrupt. 
 * 
 * The argument value that Linux tried to write to TX0_CP is only written if 
 * any of the following cases hold: 
 * -The NIC is in the initialization process and has finished the reset 
 *  operation, and TX0_CP is to be initialized to zero. These requirements 
 *  avoids putting the NIC in a dead state. 
 * -The NIC is not executing the initialization process or the transmission
 *  teardown process and therefore can TX0_CP be written to any value. 
 * -A teardown process is complete and have terminated the transmission 
 *  process, and Linux wants to acknowledge this (val = TD_INT). A 
 *  transmission teardown process is considered complete by the oracle only if 
 *  TX0_CP contains the teardown interrupt code TD_INT = 0xFFFFFFFC, 
 *  TX0_HDP = 0, and the following two conditions hold: 
 * -If there are unused buffer descriptors left in the queue pointed to by 
 *  tx0_active_queue after the teardown, then the first of those unused 
 *  buffer descriptors have its teardown bit set. 
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 * -If there are no unused buffer descriptors, then all of the buffer 
 *  descriptors in the transmission queue have been released. 
 *  These two conditions imply that an update of tx0_active_queue is equal will
 *  assign it the value zero. If there is a set teardown bit in the first unused buffer
 *  descriptor or all buffer descriptors in the transmission queue are released by
 *  the NIC, then update_active_queue sets tx0_active_queue to zero and updates 
 *  α. If the teardown process is considered complete, then the teardown is
 *  acknowledged and the NIC deasserts the teardown interrupt and 
 *  tx0_tearingdown is falsified since the teardown is complete. The purpose with
 *  the last if statement is to make sure that the transmission teardown process is
 *  complete. The condition of this if statement requires that the last step of the
 *  transmit teardown process is to clear TX0_HDP or set TX0_CP to
 *  0xFFFFFFFC. This is consistent with the NIC model. 
 * 
 * If Linux did not try to do something strange, true is returned. The reason 
 * for forcing Linux to acknowledge the teardown is because an atomic oracle 
 * cannot initiate the teardown process and then wait until the teardown is 
 * complete: The NIC cannot execute while the oracle executes since the oracle 
 * is atomic! Since a well-behaving Linux guest does acknowledge teardown 
 * interrupts this is not a practical problem, provided that CP registers are 
 * set to 0xFFFFFFFC by the NIC as the last operation of a teardown process, 
 * which is unknown as discussed in 4.2.10.4 Design Issues. 
 * 
 * Some handlers force Linux to acknowledge teardowns before they allow the 
 * NIC register write. Sometimes it makes the verification task easier but 
 * most often is it to prevent the NIC from entering a dead state. 
 */ 
(ideal_state, bool): tx0_cp_handler(ideal_state: i, word32: val) 

if ¬i.oracle.initialized then 
(i.nic, word32: cpdma_soft_reset) := read_nic_register(i.nic, CPDMA_SOFT_RESET) 
if cpdma_soft_reset = 1  val ≠ 0 then ∨

return (i, false) 
else 

i.nic := write_nic_register(i.nic, TX0_CP, 0) //val = 0. 
i.oracle.tx0_cp_initialized := true 

if i.oracle.tx0_hdp_initialized  i.oracle.rx0_hdp_initialized  i.oracle.rx0_cp_initialized then ∧ ∧
i := initialization_performed(i) 

return (i, true)
else

//No teardown under progress and any value can be written.
if ¬i.oracle.tx0_tearingdown then

i.nic := write_nic_register(i.nic, TX0_CP, val)
return (i, true)

//Updates tx0_active_queue and related data structures and reads TX0_CP
//and TX0_HDP.
i := update_active_queue(i, TRANSMIT)
(i.nic, word32: tx0_cp) := read_nic_register(i.nic, TX0_CP)
(i.nic, word32: tx0_hdp) := read_nic_register(i.nic, TX0_HDP)
//If the teardown is considered complete and Linux wants to acknowledge
//it, then the teardown interrupt is acknowledged and the
//tx0_tearingdown flags is cleared since the teardown process is now
//considered complete.
if i.oracle.tx0_tearingdown  i.oracle.tx0_active_queue = 0 ∧ ∧

tx0_cp = TD_INT  tx0_hdp = 0  val = TD_INT then∧ ∧
i.nic := write_nic_register(i.nic, TX0_CP, TD_INT) //val = TD_INT
i.oracle.tx0_tearingdown := false
return (i, true)

else 
return (i, false)

B.4 cppi_ram_handler and Proof of Lemma V
This section presents the pseudocode of cppi_ram_handler, and describes how 
Lemma V can be proved for cppi_ram_handler for a special case. That scenario 
constitutes the most complex proof of Lemma V for a NIC register write request 
handler.
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B.4.1 cppi_ram_handler
/* 
 * Linux wants to write the CPPI_RAM word with physical address 
 * pa with the value val, in to either extend an active queue 
 * or to initialize a buffer descriptor that will later be inserted into a 
 * transmission or reception queue. 
 * 
 * The first argument contains the physical address of a word in CPPI_RAM that 
 * Linux tried to write with the value in the second argument. 
 * 
 * To ease the simulation proof a check is first made to make sure that the 
 * initialization and teardown processes are idle. Then the 
 * tx0/rx0_active_queue, α and ρNIC variables are updated to 
 * give an accurate view of which CPPI_RAM words are in use by the NIC and 
 * hence can affect the operation of the NIC. 
 * 
 * If the accessed CPPI_RAM word is not used by the NIC then it is written and 
 * the handler returns. 
 * 
 * Otherwise the handler checks what kind of overlap the CPPI_RAM write 
 * request made on the transmit queue, and if no overlap with the transmit 
 * queue was made, then the receive queue is checked as follows: 
 * -Next descriptor pointer of last buffer descriptor: In this case it is 
 *  checked if the new queue to be appended is secure. A queue is considered 
 *  secure if: 
 * 1. Its buffer descriptors are word aligned in CPPI_RAM. 
 * 2. It does not overlap the queues pointed to by tx0/rx0_active_queue. 
 * 3. It does not overlap itself. 
 * 4. Its buffer descriptors only access Linux RAM memory and have buffer 
 * length fields greater than zero. 
 * 5. For transmission, its SOP and EOP bits match (each SOP is matched 
 * by an EOP without an intermediate SOP) and the packet length field 
 * in the SOP buffer descriptors is equal to the sum of the buffer 
 * descriptors belonging to the same frame. 
 * 6. For reception, no executable pages or page tables are accessed. 
 * 
 *  If is_queue_secure determines the queue secure, then it also configures 
 *  some bits of the buffer descriptors appropriately: 
 * -For transmission buffer descriptors: 
 * -Sets the ownership bit in SOPs. 
 * -Clears EOQ bit in EOPs. 
 * -Celars TD bit in SOPs. 
 * -For all reception buffer descriptors: 
 * -Clears Buffer Offset, SOP, EOP, EOQ, TD and CRC fields. 
 * -Sets the ownership bit. 
 * 
 *  If the new queue is secure, then: 
 * 1. α is updated to mark the buffer descriptors of the 
 * new queue as active (ρNIC is not updated for the transmit case). 
 * 2. The requested value is written to the requested CPPI_RAM word. 
 * 3. A potential misqueue condition is handled. The reason for the 
 * misqueue handling is to allow the ideal Linux model to simulate the 
 * real Linux model with an atomic oracle. It just restarts 
 * transmission from the new queue if the transmission process was 
 * finished after tx0_active_queue was updated. 
 * -Any other overlap: Are considered illegal even if they are not security 
 *  related. This actually caused an incompatibility problem with the 
 *  operation of the Linux NIC driver. By changing one line in the Linux NIC 
 *  driver, this problem was solved. 
 * -no overlap: If no overlap was made on the transmit queue, then the 
 *  operations performed in the previous two bullets are done but for the 
 *  receive case. For the receive case ρNIC is updated if the receive queue is 
 *  extended. A secure queue does not need to have matching SOP and EOP buffer 
 *  descriptors (since they are set by the NIC), and the new queue must only 
 *  access non-executable, non-NIC register data blocks. If the queue is 
 *  determined secure by is_queue_secure then the the buffer descriptors are 
 *  configured as follows: clears Buffer Offset, SOP, EOP, EOQ, TD and CRC 
 *  bits, and sets the ownership bit, in all buffer descriptors. 
 * 
 * All in all, this handler accepts a CPPI_RAM write request if any of the two 
 * cases apply: 
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 * -The access does not overlap the transmit and receive queues. 
 * -Extends the transmit or receive queues if the queue to add is secure, and 
 *  then appropriately updates α, ρNIC and configures the added 
 *  buffer descriptor flag bits. 
 */ 
(ideal_state, bool): cppi_ram_handler(ideal_state: i, word32: pa, word32: val) 

//Checks that the initialization and teardown processes are idle. 
if ¬i.oracle.initialized  i.oracle.tx0_tearingdown  i.oracle.rx0_tearingdown then ∨ ∨

return (i, false) 

//Updates the oracles view of which buffer descriptors are in use by the 
//NIC by updating tx0/rx0_active_queue and related data structures. That 
//view might affect the oracle's decision of rejecting or accepting the NIC 
//register write request to CPPI_RAM. 
i := update_active_queue(i, TRANSMIT) 
i := update_active_queue(i, RECEIVE) 

//Checks if the accessed CPPI_RAM is used by the NIC. If not, then the 
//write can be executed and the handler returns. 
if ¬i.oracle.α((pa – CPPI_RAM) >> 2) then 

i.nic := write_nic_register(i.nic, pa, val) 
return (i, true) 

//Since the previous if statement failed, it means that the accessed 
//CPPI_RAM word was used by the NIC, as considered by the oracle, and 
//therefore it must be checked which word of an active buffer descriptor 
//that was accessed. First is the transmit queue checked and then the 
//receive queue. They are handled separately. 
word32: transmit_overlap := type_of_cppi_ram_access_overlap(i, pa, i.oracle.tx0_active_queue) 
//Only the next descriptor pointer of the last buffer descriptor in a queue 
//is allowed to be written. 
if transmit_overlap = ZEROED_NDP_OVERLAP then 

//If such a write is requested then it is checked whether the appended 
//queue queue is secure. 
(i, bool: is_queue_secure) := is_queue_secure(i, val, TRANSMIT) 
//If the queue is considered secure, then relevant to the new queue are 
//updated and the queue is appended by actually performing the write to 
//CPPI_RAM. 
if is_queue_secure then 

i := update_ρNIC_α_queue(i, val, TRANSMIT, ADD) 
i.nic := write_nic_register(i.nic, pa_nic_register, value) 
//To allow this atomic oracle to simulate an implementation of this 
//handler, a potential misqueue condition is also checked: If the NIC
//completed the processing of the transmission queue just after
//update_active_queue was applied but before it was extended, then is
//the HDP register set to the new queue to activate transmission for the
//new buffer descriptors. 
i := handle_potential_misqueue_condition(i, TRANSMIT, pa, val) 
return (i, true) 

else 
return (i, false) 

//The overlap on the transmission queue was illegal and the NIC register 
//write request is denied. 
else if transmit_overlap = ILLEGAL_OVERLAP then 

return (i, false) 
//Checks overlap for the reception queue in a nearly identical way as for 
//the transmission queue. 
else 

word32: receive_overlap := type_of_cppi_ram_access_overlap(i, pa, i.oracle.rx0_active_queue) 
(i, bool: is_queue_secure) := is_queue_secure(i, val, RECEIVE) 
if receive_overlap = ZEROED_NDP_OVERLAP  is_queue_secure then ∧

i := update_ρNIC_α_queue(i, val, RECEIVE, ADD) 
i.nic := write_nic_register(i.nic, pa, val) 
i := handle_potential_misqueue_condition(i, RECEIVE, pa, val) 
return (i, true) 

else //receive_overlap = ILLEGAL_OVERLAP since α was true for pa. 
return (i, false)
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B.4.2 Proof of Lemma V for cppi_ram_handler

This subsection describes how Lemma V can be proved for cppi_ram_handler 
when the NIC in the real model completes the processing of the transmission queue
after the update of tx0_active_queue but before the transmission queue is extended.

How do the five different types of autonomous NIC transitions relate to each 
other?

• Initialization: Can only occur after both transmit and receive are idle (see 
nic_scheduler). Cannot run in parallel with teardown processes (see See 
checks on init_complete, init_step, transmit_teardown_step and 
receive_teardown_step in write_cpdma_soft_reset, write_tx_teardown and 
write_rx_teardown). Hence it runs alone in the NIC, if not a dead state is to 
be entered, which the current NIC configuration is not in since R and S 
holds and are transferred to the real initial state and those properties are not 
broken by this function.

• Transmit: Can run in parallel with the receive and receive teardown 
processes. Can only operate on buffer descriptors in tx0_active_queue (by 
R since tx0_active_queue includes all transmit buffer descriptors and they 
are not overlapped with the buffer descriptors in rx0_active_queue which 
includes all receive buffer descriptors).

• Transmit teardown: Can only occur after transmit is idle (see 
nic_scheduler). Can only operate on buffer descriptors in tx0_active_queue 
(by R since tx0_active_queue includes all transmit buffer descriptors and 
they are not overlapped with the buffer descriptors in rx0_active_queue 
which includes all receive buffer descriptors).

• Receive: Can run in parallel with the transmit and transmit teardown 
processes. Can only operate on buffer descriptors in rx0_active_queue (by 
R since rx0_active_queue includes all receive buffer descriptors and they 
are not overlapped with the buffer descriptors in tx0_active_queue which 
includes all transmit buffer descriptors).

• Receive teardown: Can only occur after receive is idle (see nic_scheduler). 
Can only operate on buffer descriptors in rx0_active_queue (by R since 
rx0_active_queue includes all receive buffer descriptors and they are not 
overlapped with the buffer descriptors in tx0_active_queue which includes 
all transmit buffer descriptors).

Hence transmit buffer descriptors are only affected by transmit and transmit 
teardown processes, and receive buffer descriptors are only affected by receive and
receive teardown processes. Furthermore, the transmission and reception processes
cannot run simultaneously as the corresponding teardown processes.

The initialization process is not active so forget about it. Since teardown processes 
are inactive, forget about them (lemma is needed that the following holds 
initialized  init_step = 0, tx0_tearingdown  transmit_step = 0 and  ⇒ ⇒
rx0_tearingdown  process_received_frame_step = 0).⇒
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Now, the interesting question is: are transmit and receive autonomous NIC 
transitions independent? Since they access different buffer descriptors, yes, but still
not completely independent. The reason is the following scenario: o0 
→NIC_MEMORY_READ(0, 0) o1 →NIC_MEMORY_WRITE(0, 0xFF) o2. What happens if these two 
transitions are reordered starting from the state o0? o0 →NIC_MEMORY_WRITE(0, 0xFF) r1 
→NIC_MEMORY_READ(0, 0) o2 does not hold since the reception process overwrote the byte
read by the transmission process. Therefore the reordered trace looks as follows: o0

→NIC_MEMORY_WRITE(0, 0xFF) r1 →NIC_MEMORY_READ(0, 0xFF) o2. The end state o2 is unaffected 
by the reordering since memory contains the same information.

However, the surrounding outside world outside the local computer system will get
0xFF instead of 0x00. Do we care about that? No! The reason is that we want to 
create a new real trace whose initial and final states are identical to the original 
trace, and such that the new trace can be matched by the ideal model. Then the 
initial and final states of the original trace are related to the initial and final states 
of the ideal trace and hence the original real trace (transition in ) is secure and is ⇝
allowed behavior, which is what is wanted. What happens to the outside world is 
not interesting. Hence transmit and receive transitions can be reordered as wanted.

A key property when reordering transmit and receive transitions is that the NIC 
does not depend on memory content. If that was not the case, the end state after the
reordering (o2 in the example above) would not be the same which could make it 
impossible or very difficult to show that the final state of the complete reordered 
trace is identical to the final state of the original real trace. Luckily the NIC does 
not depend on memory content.

By a lemma and security invariant: initialized  init_step = 0, ¬tx0_tearingdown ⇒
 transmit_step = 0, and ¬rx0_tearingdown  process_received_frame_step = 0. ⇒ ⇒

Hence only transmit and receive processes make transitions during the execution of
write_cppi_ram that affect the results computed by write_cppi_ram.

Reordering original trace:

1. Transitions during execution of update_active_queue(TRANSMIT): Only 
autonomous transmit (process) NIC transitions as part of the transmission 
process of the NIC affect the result of the computation of this function call: 
The ownership bit of the buffer descriptors in tx0_active_queue. This bit 
only depends on autonomous transmit NIC transitions. This is the case 
since tx0_tearingdown is false, which means that the transmit teardown 
process is idle (meaning that it is not active and it is not waiting for the 
transmit process to end) and hence it cannot set the ownership and 
teardown bits (lemma: just before the function is called: tx0_tearingdown 

 transmit_step = 0 must hold), and because the queues pointed to by ⇒
tx0/rx0_active_queue do not overlap themselves or each other (hence the 
ownership bit cannot be modified as a result of reception or reception 
teardown process, and the initialization process is idle but does not modify 
CPPI_RAM, and therefore these bits cannot be modified in an illegal way) 
which is a lemma (lemma: just before the function is called: all buffer 
descriptors in tx0/rx0_active_queue are isolated from each other and 
contain all used buffer descriptors of the NIC). Another lemma is that the 
function cannot break these lemmas since they must hold for the next 
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function call: the lemma is preserved since the next descriptor pointers are 
not modified and tx0_active_queue is only advanced passed released buffer
descriptors.

Therefore only autonomous NIC transmit transitions affect the call to 
update_active_queue(TRANSMIT). Therefore, of the autonomous NIC 
transitions that occur during the execution of update_active_queue, the 
autonomous NIC transitions that affect the termination condition of 
update_active_queue are moved to occur before update_active_queue starts
execute, and all other NIC transitions are moved to occur after 
update_active_queue terminates.

2. Transitions during execution of update_active_queue(RECEIVE): Only 
autonomous receive NIC transitions affect the computation of this function 
call. That is the case since the buffer descriptors operated on by the transmit
and receive processes are disjunct: all active buffer descriptors are in the 
queues pointed to by tx0/rx0_active_queue and they do not overlap or each 
other. Again, what the outside world sees is Linux guest memory is not 
relevant.

Therefore all autonomous receive NIC transitions that affect the 
termination condition of this call are moved to occur before the call to 
update_active_queue(TRANSMIT) (note TRANSMIT and not RECEIVE) 
and the rest of the autonomous receive NIC transitions are moved to occur 
after update_active_queue(RECEIVE). The autonomous transmit NIC 
transitions in step 1 that are moved after 
update_active_queue(TRANSMIT) are moved further back to after 
update_active_queue(RECEIVE). The internal order of the transmit 
transitions are always kept and likewise for receive transitions. However, 
the relative order of some transmit and receive transitions might get 
changed which affects what the outside world sees, but that is not relevant 
to the security of the system and is allowed by the ideal model.

3. If the write does not overlap an active buffer descriptor, then the write is 
performed on a word in CPPI_RAM that is not used by the NIC and hence 
the write and the NIC are independent. If there was an overlap, then the 
NIC is not accessed. Therefore all transitions as ordered according to step 2
that follow update_active_queue(RECEIVE) are independent of this code 
block and are moved to occur after it.

4. By cppi_ram_overlap lemma the autonomous NIC transitions moved to 
occur after the overlap check can be moved to occur after the call to 
type_of_cppi_ram_access_overlap.

5. There are three cases depending on the result from 
type_of_cppi_ram_access_overlap.

A) Zeroed next descriptor pointer: By is_queue_secure lemma the 
autonomous NIC transitions moved to occur after the transmit queue 
overlap check can be moved to occur after this call. However, there are 
two cases depending on whether true or false is returned.
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i. True: Since is_queue_secure returned true with value as argument it
means that that queue does not overlap any active queue. 
update_ρNIC_φACTIVE_CPPI_RAM_queue only accesses next descriptor 
pointer fields, in the transmit case, of the queue pointed to by value.
Hence this call is independent of autonomous NIC transitions and 
therefore all autonomous NIC transitions that occur after 
is_queue_secure can be moved to occur after this call.

Now the next descriptor pointer field of the last buffer descriptor of 
the transmit queue is written with the physical address of the new 
queue. If the autonomous NIC transitions occurring before this 
write have not emptied the transmit queue to be extended with the 
new one, then all autonomous NIC transitions occurring after 
is_queue_secure can be moved to occur after this write, without 
affecting those transitions compared to the original trace. Then 
write_cppi_ram terminates and all autonomous NIC transitions 
occurring during this scenario can be moved to either before or after
this function and it can execute atomically.

If the autonomous transmit NIC transitions occurring before this 
write has emptied the transmit queue to be extended, then they 
cannot be moved to occur after this write. If the transmit queue to 
be extended became empty between update_active_queue and this 
CPPI_RAM write in the original trace, then those autonomous 
transmit NIC transitions cannot be moved to occur either before 
update_active_queue or after this write. In the former case, 
tx0_active_queue and φACTIVE_CPPI_RAM (manipulated by 
update_active_queue) would have a different values compared to 
the original trace when comparing the final states of the handler 
traces. In the latter case the NIC would process the new queue and 
therefore end up in a different state compared to the original trace.

Therefore the autonomous NIC transmit transitions in the original 
trace that occur after the autonomous NIC transmit transitions that 
affect the termination condition of 
update_active_queue(TRANSMIT) and before the write to 
CPPI_RAM are stuck between these to events. Immediately after 
the CPPI_RAM write, write_cppi_ram terminates.

B.5 Granularity of Specification Transitions
This section discusses which granularity the oracle transitions can have and why 
atomic transitions are desirable:

• Atomic oracle: At one extreme, an oracle transition can be defined to 
perform all operations of its exception handler.

• Coarse-grained oracle: Another alternative could be to define a transition to
perform all oracle operations that occur between each NIC register access.
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• Fine-grained oracle: At the other extreme, an oracle transition can be 
defined to perform one operation, such as assigning a value to a variable or 
computing an if-condition.

The following aspects are worth to consider when choosing the granularity of the 
oracle transitions:

• The number of definitions of the transitions rules and their complexity.

• Preservation of S.

• Difficulties in reordering the CPU and NIC transitions when creating a new
sub-trace in the real model that shall be used to be matched by oracle 
transitions.

The following three subsections describe how well these three aspects are 
considered by the three transition granularities.

B.5.1 Complexity of Transitions

The more fine-grained the transitions are, the more complex they get:

• More transitions must be defined and what parts of an exception handler a 
transition include.

• The state needs to be extended with additional control information and the 
transitions with additional operations and side conditions. The reason is that
the transitions that constitute a handler must be applied in correct order, 
which these additional operations and side conditions do by operating on 
the additional control information.

• If a complete if-then-else statement is not performed by a single transition, 
then parts of the then statement or else statement is performed by a 
different transition. This complicates the task described in the previous 
bullet.

• If a higher-level operation is split into several transitions, then it gets harder
to analyze the outcome of that operation since a sequence of transitions 
must be considered, and not just a single one as is the case with an atomic 
oracle.

Also, if the oracle transitions are too fine-grained, the ideal model looses its value 
of specifying a valid design, since low-level details are included in the reasonings 
which takes focus from the actual operation. This would mean that it might not be 
too far away from proving everything on the real model alone.

To summarize, the lower the abstraction level is of transition rules, the more details
and overhead information must be considered when defining the transitions. This 
aspect means an atomic oracle is best.

B.5.2 Preservation of SEC

There are two scenarios to consider when proving that the oracle transitions 
preserve SEC: the transition does not access a sensitive resource (SEC does not 
depend on it, like τ for instance), or the transition does access a sensitive resource 

229



(SEC does depend on it). If a transition does not write resources mentioned by SEC
(reads do not affect the value of SEC), the transition granularity does not really 
matter.

If a transition does write resources that SEC depends on, then certain properties of 
the value written must be known in order to prove that SEC is preserved. If the 
value written is computed by another transition, the proof gets a bit harder for 
lower-level transition rules because it must be considered which earlier transitions 
could have been applied, in which order they were applied, and what operations 
they performed. Hence, in this respect, atomic transitions are best.

B.5.3 Rescheduling of CPU and NIC

It is easier to create a new real model sub-trace that can be matched by a sub-trace 
of the ideal model if the ideal sub-trace is allowed to have NIC transitions 
interleaved with non-atomic specification transitions. However, since it has been 
reasoned for most execution scenarios for most NIC register write request handlers
that Lemma V can be proved for them, the conclusion is that atomic specification 
transitions can be managed.

With the reasoning in the previous subsections, atomic specification transitions 
seem to be the best solution, and has therefore been used in the work presented in 
this thesis. However, it is unknown at this time how difficult it is to prove in HOL4
that reordered real model sub-traces can be matched by atomic specification 
transitions. Hence, the use of non-atomic specification transitions should not be 
ruled out after all.
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Appendix C Model of Network Interface 
Controller
This appendix describes the NIC model by means of the pseudocode notation 
described in Appendix A, including comments. To save space and due to the 
similarities of the transmission and reception related processes, are the reception 
and reception teardown processes omitted. The differences are that the reception 
process issues memory write requests instead of memory read requests, and that 
the reception and reception teardown processes sets additional fields in the buffer 
descriptors after a frame has been processed. It is upon this formal model that it 
has been reasoned that the NIC register write request handlers preserve the formal 
definition of S in Appendix D.

First is a description given of the modeled NIC registers, and second is a list 
presented of assumptions made about the content of certain NIC registers, some of 
which are not modeled. Following that are the NIC state and the pseudocode that 
specifies the four types of NIC transitions defined: NIC register reads, NIC register
writes, autonomous NIC transitions and memory read request replies, where the 
latter two are specified by the NIC scheduler and the NIC processes. The final 
section describes the registers that are necessary to model if the interrupts that 
Linux uses are to be modeled accurately. The current NIC model asserts interrupts 
correctly but does so non-deterministically to simulate both behaviors of enabled 
and disabled interrupts.

C.1 NIC Registers in NIC Model
The registers are modeled as variables storing bit strings and functions mapping bit
strings to bit strings. All physical NIC registers are allocated 32 bits but some NIC 
registers do not use all of their 32 bits. Such registers are modeled as bit strings 
with fewer bits. The modeled registers are the following ones:

• DMACONTROL: Consists of 16 bits but only bit one (RX_OWNERSHIP)
and two (RX_OFFLEN_BLOCK) are relevant for the purpose of the NIC 
model. These two bits affect how the NIC manipulates receive buffer 
descriptors in CPPI_RAM. The operations that this register causes are not 
modeled. The NIC enters a dead state if any of the bits of this register are 
set by the CPU.

• CPDMA_SOFT_RESET: Consists of one bit which is set to one by the 
CPU to reset the NIC DMA hardware, and is cleared by the NIC when the 
reset is complete. This causes the initialization process to be activated when
the transmission and reception processes have finished the handling of their
current frames (if any).

• RX_BUFFER_OFFSET: Consists of 16 bits. This register determines how 
many leading bytes that shall be skipped when storing the first part of a 
received frame in a data buffer in memory. For instance, if it is three then 
the first three bytes of the data buffer are not used to store the received 
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frame. In effect, received frames get their lengths extended by the amount 
stored in this register, which affects memory accesses.

• CPPI_RAM: Models the memory area of the NIC that holds the buffer 
descriptors. This memory area consists of 213 bytes and is modeled as a 
function that maps bit strings of length 13 to bytes. The argument is the 
offset address relative to the start of the first physical address of 
CPPI_RAM (0x4A102000). Writing this register can potentially affect the 
already active transmission and reception processes.

• TX0_HDP. Set to the physical address of the head of a buffer descriptor 
queue in CPPI_RAM to activate the transmission process. The written 
value is the physical address of the buffer descriptor as seen from the 
perspective of the complete address space of the computer, and not as an 
offset to the start of the CPPI_RAM register. When transmission is finished
is this register zeroed.

This register is modeled in a peculiar way because the modifications of this 
register during transmissions are not completely specified. When 
TX0_HDP is written by the CPU, the new value is stored in a NIC model 
variable called transmit_current_bd and TX0_HDP is given an arbitrary 
non-deterministically chosen non-zero value. The chosen value must be 
non-zero because a zero value means that the transmission process is idle. 
However, TX0_HDP is set to zero after a reset operation, if the CPU writes 
that value because that behavior is specified.

• RX0_HDP: Set to the head of a buffer descriptor queue in CPPI_RAM that 
is used to store received frames. Writing RX0_HDP does not activate the 
reception process, but it allows the NIC scheduler to non-deterministically 
decide that a new frame has arrived which in turn activates the reception 
process. RX0_HDP is zeroed when all buffer descriptors in the reception 
queue have been consumed by the reception process.

As in the case with TX0_HDP, this register is also modeled as being written
with a non-deterministically chosen non-zero value when the CPU wants to
give the NIC a new reception queue and enable reception. The variable 
receive_current_bd is set to the value that the CPU wanted to write. 
However, by reading the RX0_HDP register on the actual hardware during 
receptions, RX0_HDP seems to be advanced to the next buffer descriptor in
the queue when the NIC has completed the processing of its current buffer 
descriptor.

• TX0_CP: The content of this register can only be set by the NIC. Writes by 
the CPU are not stored in this register but are used to acknowledge frame 
transmission completion and transmission teardown interrupts. The 
transmission process sets this register to the address of the last buffer 
descriptor of the most recently transmitted frame when that frame 
transmission is complete, or to 0xFFFFFFFC when a teardown process has 
completed. Such writes make the NIC assert an interrupt and which. These 
interrupts are deasserted by the NIC when the CPU writes the value 
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currently stored in this register. Other written values by the CPU are 
ignored by the NIC.

• RX0_CP: Used in an identical way as TX0_CP but with respect to 
reception instead of transmission.

• TX_TEARDOWN: Consists of three bits and is always read as zero. 
Software writes the ID of the transmission DMA channel that is to be teared
down. Since only channel zero is modeled, does the NIC enter a dead state 
if any other value is written by the CPU. Writing this register with the value
zero allows the NIC scheduler to schedule the transmission teardown 
process, as soon as the transmission process has finished the processing of 
its current frame. The transmissions of following frames are canceled.

• RX_TEARDOWN: Is similar to the TX_TEARDOWN register but disables
reception, and hence the possibility to store future incoming frames in 
memory.

The NIC state variables that correspond to hardware registers are written in capital 
letters, using the same names as given by the NIC hardware specification, while all
other variables are written with small letters. Register writes by the CPU are 
modeled by the function write_nic_register which takes as arguments the NIC 
state, the physical address of the register to write and the value to write. Register 
reads are modeled by the function read_nic_register which takes as its arguments 
the NIC state and the physical address of the register to read, and returns the input 
NIC state, since NIC register reads have no side effects, and the read register value.

C.2 Assumptions
The operation specified by the NIC model depends on some assumptions about the 
content of certain NIC registers, several of which have not been modeled. Some 
assumptions are made to make the NIC model useful without including the 
registers in the model, and some assumptions are made to include more behavior of
the NIC to increase the set of potentially accessed memory addresses. No 
assumption is in conflict with the operation of Linux. The assumptions are:

• TX_CONTROL and RX_CONTROL: The TX_EN and RX_EN bits are set
to enable the DMA controller for transmission and reception, respectively. 
If they are cleared, then the NIC does not access memory.

• MACCONTROL:

◦ The RX_CMF_EN bit is set to enable transfers of received MAC 
control frames to memory. This assumption allows the NIC to write 
certain bits of buffer descriptors that would otherwise not be made.

◦ The RX_CSF_EN bit is set to allow reception of frames that are shorter 
than 64 bytes. This assumption allows the NIC to write data buffers that
are smaller than 64 bytes.

◦ The RX_CEF_EN bit is set to allow reception of frames that contain 
errors and that are longer than specified in the non-modeled register 
RX_MAXLEN. This assumption allows frames of arbitrary size to be 
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stored in memory, and it also allows the NIC to write certain buffer 
descriptor fields.

• DMACONTROL:

◦ The RX_CEF bit is set to allow buffer overruns. This property enables 
the NIC to store received frames that do not fit in the data buffers, as 
specified by the buffer descriptors in the receive queue, to the extent the
frames fit. This assumption allows the NIC to write the overrun bit in 
buffer descriptors. However, the modeling of DMACONTROL assumes
this bit is zero. The meaning of this is that the NIC model acts as if this 
bit is set, but the content of DMACONTROL acts as if this bit is 
cleared. That is, the behavior is modeled, but not the content of this 
register with respect to this bit. Linux does not set this bit. This 
assumption is made to allow additional CPPI_RAM modifications to 
increase the set of potential memory accesses.

◦ The RX_OFFLEN_BLOCK bit is cleared to make the NIC write the 
buffer offset and buffer length fields of the third word of receive buffer 
descriptors. This reflects the modeled behavior of the NIC. That is, the 
NIC model acts as if this bit is cleared.

◦ The RX_OWNERSHIP bit is cleared to make the NIC clear the 
ownership bit in receive buffer descriptors when the NIC is done with a 
set of buffer descriptors related to a received frame. The NIC model 
describes the operation of the NIC as if this bit is cleared.

C.3 Definition of State of NIC
The variables of the NIC model shall be initialized as described by the comments 
in the definition of the NIC state. The hardware registers are initialized to their 
reset values, but they are unspecified for CPPI_RAM, which shall therefore be 
initialized non-deterministically. An initialized NIC state corresponds to a state 
where the NIC has just been powered on. The definition follows.
nic_state = ( //The type of the state of the NIC.

bool: dead_state, //Initialized to false. True if the current NIC state is undefined.
bool: interrupt, //Initialized to false. True if a frame completion interrupt is asserted.
nic_regs: regs, //The component containing all modeled NIC registers.
init_state: init_p, //The component of the initialization process.
transmit_state: tx_p, //The component of the transmission process.
receive_state: rx_p, //The component of the reception process.
transmit_teardown_state: tx_td_p, //The component of the transmission teardown process.
receive_teardown_state: rx_td_p //The component of the reception teardown process.

)
nic_regs = ( //The type of the record that contains all modeled NIC registers.

word16: DMACONTROL, //Reset value is zero.
word1: CPDMA_SOFT_RESET, //Reset value is zero.
word16: RX_BUFFER_OFFSET, //Reset value is zero.
word13 → word8: CPPI_RAM, //Reset value is unspecified. Can be chosen non-deterministically.
word32: TX0_HDP, //Reset value is zero. Its value during transmission is undefined.
word32: RX0_HDP, //Reset value is zero. Its value during reception is undefined.
word3: TX_TEARDOWN, //Reset value is zero.
word3: RX_TEARDOWN, //Reset value is zero.
word32: TX0_CP, //Reset value is zero.
word32: RX0_CP //Reset value is zero.

)
init_state = ( //The type of the state of the initialization process.

bool: init_complete, //Initialized to false. True if NIC has been initialized and init_step = 0.
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bool: tx0_hdp_initialized, //Initialized to false. True if TX0_HDP has been zeroed after a reset.
bool: rx0_hdp_initialized, //Initialized to false. True if RX0_HDP has been zeroed after a reset.
bool: tx0_cp_initialized, //Initialized to false. True if TX0_CP has been zeroed after a reset.
bool: rx0_cp_initialized, //Initialized to false. True if RX0_CP has been zeroed after a reset.
nat: init_step //Initialized to zero. 0 if idle, 1 to do reset, 2 if initialize registers.

)
transmit_state = ( //The type of the state of the transmission process.

nat transmit_step, //Initialized to zero. Specifies next step function to apply.
nat transmit_read_buffer_descriptor_bytes, //Need not be initialized. Number of read bytes of current descriptor.
word32 transmit_current_bd, //Need not be initialized. Physical address of current buffer descriptor.
word32 transmit_current_bd_value_word0, //Need not be initialized. Word 0 of the current buffer descriptor.
word32 transmit_current_bd_value_word1, //Need not be initialized. Word 1 of the current buffer descriptor.
word32 transmit_current_bd_value_word2, //Need not be initialized. Word 2 of the current buffer descriptor.
word32 transmit_current_bd_value_word3, //Need not be initialized. Word 3 of the current buffer descriptor.
word32 transmit_sop_bd_physical_address, //Need not be initialized. Physical address of SOP descriptor of frame.
word32 transmit_eop_bd_physical_address, //Need not be initialized. Physical address of EOP descriptor of frame.
word32 transmit_next_buffer_byte_address, //Need not be initialized. Physical address of next byte to transmit.
bool transmit_expect_sop, //Need not be initialized. True if next descriptor shall be SOP.
word32 transmit_buffer_length, //Need not be initialized. Number of bytes left to transmit of frame.
word11 transmit_sop_packet_length, //Need not be initialized. The packet length field of the SOP descriptor.
nat transmit_sum_buffer_length, //Need not be initialized. The sum of all buffer length fields of frame.
bool memory_request, //Initialized to false. True if NIC waits for memory read reply.
bool interrupt //Initialized to false. True if the NIC asserts a tx or td interrupt.

)
transmit_teardown_state = ( //The type of the state of the transmission teardown process.

nat transmit_teardown_step //Initialized to zero. Specifies next step function to apply. 0 when idle.
)

C.4 Reads of NIC Registers
/* 
 * @nic: The NIC state which defines the content of the NIC register to read. 
 * 
 * @physical_address: word32. The physical address of the NIC register to read. 
 * 
 * If @physical address is not word aligned, then does the NIC enter a dead 
 * state. Also, if the register at @physical_address is not modeled, then is a 
 * non-deterministically 32-bit value returned. 
 */ 
(nic_state, word32): read_nic_register(nic_state: nic, word32: physical_address) 

if physical_address[1:0] ≠ 0 then //Checks word alignment. 
nic.dead_state := true 
return (nic, 0) 

else if physical_address = 0x4A10_0808 then 
return (nic, 0) //TX_TEARDOWN is read as zero. 

else if physical_address = 0x4A10_0818 then 
return (nic, 0) //RX_TEARDOWN is read as zero. 

else if physical_address = 0x4A10_081C then 
return (nic, nic.regs.CPDMA_SOFT_RESET) 

else if physical_address = 0x4A10_0820 then 
return (nic, nic.regs.DMACONTROL) 

else if physical_address = 0x4A10_0828 then 
return (nic, nic.regs.RX_BUFFER_OFFSET) 

else if physical_address = 0x4A10_0A00 then 
return (nic, nic.regs.TX0_HDP) 

else if physical_address = 0x4A10_0A20 then 
return (nic, nic.regs.RX0_HDP) 

else if physical_address = 0x4A10_0A40 then 
return (nic, nic.regs.TX0_CP) 

else if physical_address = 0x4A10_0A60 then 
return (nic, nic.regs.RX0_CP) 

//Makes sure that the whole word is within CPPI_RAM by checking that the third 
//byte is within the upper limit. This is done by subtracting the upper limit by three. 
else if 0x4A10_2000 ≤ physical_address  physical_address < 0x4A10_4000 - 0x3 then ∧

return (nic, nic.regs.CPPI_RAM(physical_address - 0x4A10_2000 + 3) :: 
nic.regs.CPPI_RAM(physical_address - 0x4A10_2000 + 2) :: 
nic.regs.CPPI_RAM(physical_address - 0x4A10_2000 + 1) :: 
nic.regs.CPPI_RAM(physical_address – 0x4A10_2000)) 

//Non-modeled NIC registers returns an arbitrary value. 
else 

return (nic, choice_non-deterministically(word32))
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C.5 Writes to NIC Registers
/* 
 * @nic: The NIC state to operate on. 
 * 
 * @physical_address: Physical address of the NIC register to write. 
 * 
 * @value: Value to write to the NIC register at @physical_address. 
 * 
 * If the given NIC state is not in a dead state, @physical_address is 32-bit 
 * word aligned, and no non-modeled HDP register is written with a non-zero 
 * value, then is @value written into that register. Otherwise does the NIC 
 * either nothing or enter a dead state. The updated NIC state as a result of 
 * the NIC register write is returned. 
 */ 
nic_state: write_nic_register(nic_state: nic, word32: physical_address, word32: value) 

if ¬nic.dead_state then 
if physical_address[1:0] ≠ 0 then //Checks word alignment. 

nic.dead_state := true 
else if ((0x4A10_0A00 < physical_address  physical_address < 0x4A10_0A20)  ∧ ∨

(0x4A10_0A20 < physical_address  physical_address < 0x4A10_0A40))  ∧ ∧
value ≠ 0 then //Writing a non-modeled HDP register with a non-zero value. 

nic.dead_state := true 
else 

if physical_address = 0x4A10_0808 then 
nic := write_tx_teardown(nic, value[2:0]) 

else if physical_address = 0x4A10_0818 then 
nic := write_rx_teardown(nic, value[2:0]) 

else if physical_address = 0x4A10_081C then 
nic := write_cpdma_soft_reset(nic, value[0]) 

else if physical_address = 0x4A10_0820 then 
nic := write_dmacontrol(nic, value[15:0]) 

else if physical_address = 0x4A10_0828 then 
nic := write_rx_buffer_offset(nic, value[15:0]) 

else if physical_address = 0x4A10_0A00 then 
nic := write_tx0_hdp(nic, value) 

else if physical_address = 0x4A10_0A20 then 
nic := write_rx0_hdp(nic, value) 

else if physical_address = 0x4A10_0A40 then 
nic := write_tx0_cp(nic, value) 

else if physical_address = 0x4A10_0A60 then 
nic := write_rx0_cp(nic, value) 

else if 0x4A10_2000 ≤ physical_address  physical_address < 0x4A10_4000 then ∧
nic := write_cppi_ram(nic, physical_address, value) 

//Accesses to non-modeled NIC registers have no effect. 

return nic

/* 
 * If the initialization or transmission teardown processes are active or the 
 * value to write is not zero (the transmission DMA channel to tear down), 
 * then writing this register is undefined (dead state entered), since only 
 * channel zero is modeled or otherwise unspecified behavior in the NIC 
 * specification. Otherwise the value to write takes effect by setting 
 * nic.tx_td_p.transmit_teardown_step to one. The new NIC state is returned. 
 */ 
nic_state: write_tx_teardown(nic_state: nic, word3: value) 

if ¬nic.init_p.init_complete  nic.tx_td_p.transmit_teardown_step > 0 then ∨
nic.dead_state := true 

else 
if value ≠ 0 then 

nic.dead_state := true 
else 

//The transmit teardown process is to be started as soon as the 
//current frame under transmission has been sent. 
nic.tx_td_p.transmit_teardown_step := 1 

 
return nic

/* 
 * Writing this register if any of the following conditions hold results in an 
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 * undefined operation (dead state entered): 
 * *Initialization has never been performed and the bit value to write is not 
 *  one. Actually this is not undefined by true hardware but forces the 
 *  software to write a one the first time this register is written. Does not 
 *  make a difference since writing a zero to this register has no effect. 
 * *Initialization has already been started (init_step > 0). 
 * *Initialization has been performed and the initialization process is 
 *  inactive, the bit value to write is one, and the transmit and/or receive 
 *  teardown processes are in progress. 
 * 
 * If the write is defined, then init_step is set to one to make the 
 * initialization process of the NIC active, and if needed it waits until the 
 * transmission and reception processes have finished the processing of their 
 * currently processed frames. The boolean variables that keep track of the 
 * initialization of the HDP and CP registers are also falsified. 
 * 
 * Initialization in this context involves both CPDMA logic reset and zeroing 
 * of the HDP and CP registers. 
 */ 
nic_state: write_cpdma_soft_reset(nic_state: nic, word1: value) 

//Initialization is not done or is under progress. 
if ¬nic.init_p.init_complete then 

//Initialization has never been done: ¬init_complete  init_step = 0. ∧
if value = 1  nic.init_p.init_step = 0 then ∧

//Writes CPDMA_SOFT_RESET to indicate that the reset is under operation. 
nic.regs.CPDMA_SOFT_RESET := 1 
//First step of the initialization process. 
nic.init_p.init_step := 1 
//Falsifies all initialization flags that tracks the initialization 
//of the HDP and CP registers. 
nic.init_p.init_complete := false
nic.init_p.tx0_hdp_initialized := false 
nic.init_p.rx0_hdp_initialized := false 
nic.init_p.tx0_cp_initialized := false 
nic.init_p.rx0_cp_initialized := false 

else //Reset is already under progress. 
nic.dead_state := true 

else //Initialization has been done and is inactive. 
//Activating reset while teardown processes are active is unspecified. 
if value = 1  (transmit_teardown_step > 0  receive_teardown_step > 0) then ∧ ∨

nic.dead_state := true 
else if value = 1 then //Activating the reset process. 

nic.regs.CPDMA_SOFT_RESET := 1 
nic.init_p.init_step := 1 
nic.init_p.init_complete := false 
nic.init_p.tx0_hdp_initialized := false 
nic.init_p.rx0_hdp_initialized := false 
nic.init_p.tx0_cp_initialized := false 
nic.init_p.rx0_cp_initialized := false 

//If value is zero, nothing needs to be done since init_complete was 
//true when this function was applied which means that CPDMA_SOFT_RESET 
//is already zero. Writing zero has no effect. 

 
return nic 

/* 
 * Writes the TX0_HDP register. This activates transmission DMA channel zero. 
 * 
 * This is an undefined operation if any of the following conditions hold: 
 * *The initialization process is active, the reset operation is complete, but 
 *  the value to write is not zero. 
 * *The initialization process is active and the reset operation is not complete. 
 * *Initialization is complete and the TX0_HDP register is not equal to zero. 
 * *Initialization is complete and the transmit teardown process is active. 
 */ 
nic_state: write_tx0_hdp(nic_state: nic, word32: bd_physical_address) 

//Initialization is not complete. 
if nic.init_p.init_complete = false then 

//Initialization is in progress, the reset operation is performed and 
//the value to write is zero: initialization conditions are satisfied. 
if bd_physical_address = 0  nic.init_p.init_step = 2 then ∧

nic.regs.TX0_HDP := 0 //bd_physical_address is zero. 
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nic.tx_p.transmit_current_bd := 0 //Synchronized with TX0_HDP. 
nic.init_p.tx0_hdp_initialized := true //TX0_HDP is now initialized. 

 
//Initialization complete. 
if nic.init_p.tx0_hdp_initialized  nic.init_p.rx0_hdp_initialized ∧ ∧

nic.init_p.tx0_cp_initialized  nic.init_p.rx0_cp_initialized then ∧
nic.init_p.init_complete := true 
nic.init_p.init_step := 0 

else 
//If the initialization process has never been performed and is 
//inactive, the reset operation has not finished or the value to 
//write is not zero, then the dead state is entered. 
nic.dead_state := true 

else 
//Initialization has been performed. 
//Writing TX0_HDP when it is not zero is an error according to the NIC 
//specification, and when it is zero, is the tranmission process idle 
//since it clears HDP as its last operation. 
if nic.regs.TX0_HDP ≠ 0 then 

nic.dead_state := true 
//If the transmission teardown process is active, then the dead state 
//is entered, even though TX0_HDP is zero. 
else if nic.tx_td_p.transmit_teardown_step > 0 then 

nic.dead_state := true 
else if bd_physical_address ≠ 0 then 

//TX0_HDP is set to an unknown value since the specification does 
//not state anything about how its value changes during transmission. 
//If TX0_HDP is zero, then it indicates that the transmission 
//process is idle, and therefore must the value to assign it be 
//non-zero. In such case it is incremented by one. 
nic.regs.TX0_HDP := choice_non-deterministically(word32) 
if nic.regs.TX0_HDP = 0 then nic.regs.TX0_HDP := 1 
//The transmit_current_bd variable is set to the buffer descriptor's 
//physical address. 
nic.tx_p.transmit_current_bd := bd_physical_address 
//The transmission process as been re-activated only if it is 
//terminated, including issuing interrupt. Otherwise step 7 of the 
//transmission process takes care of re-initiating it unless a 
//pending reset or teardown operation is pending. 
if nic.tx_p.transmit_step = 0 then 

nic.tx_p.transmit_step := 1 
//A SOP buffer descriptor is expected to be the first buffer 
//descriptor in the transmit queue. 
nic.tx_p.transmit_expect_sop := true 

//If the TX0_HDP register is already zero and is to be set to zero, 
//then nothing happens. 

 
return nic 

/* 
 * Has the same initialization requirements as the HDP registers. If they are 
 * not satisfied then a dead state is entered. If initialization has been 
 * done, then nothing happens since the hardware only deasserts potential 
 * interrupts, which are not modeled. Since it is unknown how the 
 * initialization of the CP registers affect interrupts, they are deasserted 
 * non-deterministically. 
 */ 
nic_state: write_tx0_cp(nic_state: nic, word32: bd_physical_address) 

if ¬nic.init_p.init_complete then 
if bd_physical_address = 0  nic.init_p.init_step = 2 then ∧

nic.regs.TX0_CP := 0 //bd_physical_address is zero. 
nic.init_p.tx0_cp_initialized := true 

 
if choice_non-deterministically(bool) then 

nic.tx_p.interrupt := false 
if ¬nic.rx_p.interrupt then 

nic.interrupt := false 
 

if nic.init_p.tx0_hdp_initialized  nic.init_p.rx0_hdp_initialized ∧ ∧
nic.init_p.tx0_cp_initialized  nic.init_p.rx0_cp_initialized then ∧

nic.init_p.init_complete := true 
nic.init_p.init_step := 0 
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else 
nic.dead_state := true 

 
//Otherwise init_complete = true and initialization is complete and the 
//completion pointer register can be written to any value. The hardware 
//does ignore the write though, except for interrupts which are deasserted 
//when the right CP value is written to the same value of its content. 
if nic.regs.TX0_CP = bd_physical_address then 

nic.tx_p.interrupt := false 
if ¬nic.rx_p.interrupt then 

nic.interrupt := false 
 

return nic

/* 
 * Writes a 32-bit word into CPPI_RAM in little endian order: Less significant 
 * bytes of the 32-bit word is written at a lower address. This must be 
 * consistent with how bytes are read from CPPI_RAM, for instance when reading 
 * a buffer descriptor. Intuitively this seems to be consistent with the NIC 
 * specification, but it does not state this little endian order explicitly. 
 */ 
nic_state: write_cppi_ram(nic_state: nic, word32: cppi_ram_physical_address, word32: bd_word) 

nic.regs.CPPI_RAM(cppi_ram_physical_address - 0x4A10_2000) := bd_word[7:0] 
nic.regs.CPPI_RAM(cppi_ram_physical_address - 0x4A10_2000 + 1) := bd_word[15:8] 
nic.regs.CPPI_RAM(cppi_ram_physical_address - 0x4A10_2000 + 2) := bd_word[23:16] 
nic.regs.CPPI_RAM(cppi_ram_physical_address - 0x4A10_2000 + 3) := bd_word[31:24] 

 
return nic

C.6 Automata Scheduler
//mem_req is the type of memory read and write requests, and for reads also their replies.
mem_req = ( 

bool: valid, //True if and only if this object actually represents a memory request. 
bool: read, //True if and only if the request corresponds to a memory read. 
word32: address, //32-bit physical address of the location to read or write in memory. 
word8: value //The byte to store or that contains the read memory byte. 

) 

//no_mem_req is a constant that is used by the functions that do not return memory requests. 
mem_req: no_mem_req := (false, false, 0, 0) 

/* 
 * This function is non-deterministically selecting the next NIC process that 
 * shall perform a transition. It represents an autonomous transition of the 
 * NIC. If no such process can perform a transition, then the returned NIC 
 * state is identical to the argument and no memory request is returned. 
 * 
 * This function determines the next transition by forming a set P consisting 
 * all processes that can make a transition in the given NIC state. The 
 * processes are represented by the following symbolic constants: 
 * -init: The initialization process. 
 * -transmit: The transmission process. 
 * -receive_new_frame: A new frame is received and the receive frame process 
 *  can make its first transition. 
 * -receive: The reception process. 
 * -transmit_teardown: The transmission teardown in progress. 
 * -receive_teardown: The reception teardown in progress. 
 *
 * If any of these processes cannot make a transition in the current state, 
 * then that process is not in the set P. 
 * 
 * To make a transition a process is selected non-deterministically from P. A 
 * function is then applied for the selected process that determines the exact 
 * transition that process shall perform (determined by the step variable of
 * the selected process), except receive_new_frame which always does the same 
 * thing. All these transitions are autonomous. That is, they occur internally 
 * in the NIC independent of the CPU and system bus. 
 * 
 * Takes a NIC state as argument and returns: 
 * -An updated state according to an autonomous transition. 
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 * -A memory read or write request. 
 * -A flag indicating whether the NIC currently raises an interrupt. 
 */ 
(nic_state, mem_req, bool): nic_scheduler(nic_state: nic) 

if nic.dead_state then 
return (nic, no_mem_req, nic.interrupt) 

 
{{init, transmit, receive_new_frame, receive, transmit_teardown, receive_teardown}}: P := {} 

 
//The reset operation occurs at frame boundaries: the reset bit is set 
//and the currently transmitted and received frames are completely 
//processed. 
if nic.init_p.init_step = 1  nic.tx_p.transmit_step = 0  nic.rx_p.receive_step = 0 then ∧ ∧

P := P  {init} ∪
 

//If the transmission process waits for a memory read reply, then it 
//cannot make a transition. 
if nic.tx_p.transmit_step > 0  ¬nic.tx_p.memory_request then ∧

P := P  {transmit} ∪
 

//A new frame can be received if all of the following conditions hold: 
//-No frame is processed by the reception process. 
//-There is a receive buffer descriptor queue. 
//-The receive teardown process is inactive. 
//-The initialization process has been completed and is not operating. 
if nic.rx_p.receive_step = 0  nic.rx_p.receive_current_bd ≠ 0 ∧ ∧

nic.rx_td_p.receive_teardown_step = 0  nic.init_p.init_complete then ∧
P := P  {receive_new_frame} ∪

 
if nic.rx_p.receive_step > 0 then 

P := P  {receive} ∪
 

//Teardown can only be executed when its operation has been requested 
//and the related transmission or reception process is inactive. 
if nic.tx_td_p.transmit_teardown_step > 0  nic.tx_p.transmit_step = 0 then ∧

P := P  {transmit_teardown} ∪
 

if nic.rx_td_p.receive_teardown_step > 0  nic.rx_p.receive_step = 0 then ∧
P := P  {receive_teardown} ∪

 
//Selects a process non-deterministically. 
{init, transmit, receive_new_frame, receive, transmit_teardown, receive_teardown}: transition
transition := choice_non-deterministically(P)
mem_req: memory_request := no_mem_req

 
if transition = init then 

(nic, memory_request) := init(nic) 
else if transition = transmit then 

(nic, memory_request) := transmit_frame(nic) 
else if transition = receive_new_frame then 

(nic, memory_request) := receive_step0(nic) 
else if transition = receive then 

(nic, memory_request) := receive_frame(nic) 
else if transition = transmit_teardown then 

(nic, memory_request) := transmit_teardown(nic) 
else if transition = receive_teardown then 

(nic, memory_request) := receive_teardown(nic) 
 

return (nic, memory_request, nic.interrupt)

C.7 Initialization Automaton
/*
 * The following function perform the hardware reset step, which is the
 * first part of the initialization process. The second part is the
 * initialization of the HDP and CP registers, which is done by writing NIC
 * registers after a performed reset operation, without any other intervening
 * NIC register writes.
 *
 * Since the NIC specification does not state what the reset operation does,
 * except from clearing the least significant bit of the CPDMA_SOFT_RESET
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 * register when it is done, no other hardware work is done than just that.
 * init_step is also set to two to put the NIC into a state that indicates
 * that the HDP and CP registers can now be initialized by writing them to
 * zero. When they are initialized, init_step is set to zero, and
 * init_complete to true.
 */
(nic_state, mem_req): init(nic_state: nic)

nic.regs.CPDMA_SOFT_RESET := 0
nic.init_p.init_step := 2
return (nic, no_mem_req)

C.8 Transmission Automaton
/* 
 * These functions specify the transitions of the transmission process. This 
 * process is activated when TX0_HDP is set to a buffer descriptor queue (at 
 * which time nic.tx_p.transmit_step is set to 1). The transmission process 
 * terminates when all buffer descriptors in the transmission queue have been 
 * processed and the corresponding frames have been sent (at which time 
 * nic.tx_p.transmit_step is set to 0). 
 * 
 * The transmission process is divided into eight step functions. Each frame 
 * transmission consists of applying all these step functions. The first five 
 * step functions processes the current buffer descriptor which contains one 
 * part of the frame under transmission. When all buffer descriptors have been 
 * processed as part of one frame transmission, post-processing begins with 
 * step 6, and ends at step 8. If additional frames exist in the transmission 
 * queue, then step 1 is performed again. Otherwise the transmission process 
 * terminates. 
 * 
 * A summary of how the transmission process is performed: 
 * 1. Check that the current buffer descriptor is correctly located in 
 * CPPI_RAM. 
 * 2. Read the bytes of the current buffer descriptor from CPPI_RAM. 
 * 3. Check that the buffer descriptor is correctly initialized. 
 * 4. Issue memory read requests for the bytes of the associated data buffer. 
 * The replies are given by the framework by applying the NIC model 
 * function memory_request_byte_reply with the reply as an argument. 
 * 5. Check if the current buffer descriptor is the last buffer descriptor of 
 * the current frame under transmission. If not apply step 1, otherwise 
 * step 6. 
 * 6. If the EOP buffer descriptor was the last one, the EOQ bit is set of 
 * the EOP buffer descriptor. 
 * 7. Clears the ownership bit of the SOP buffer descriptor of the 
 * transmitted frame. If the EOP buffer descriptor was the last one, then 
 * TX0_HDP is cleared. 
 * 8. Sets TX0_CP to the physical address of the current buffer descriptor, 
 * which is the last one of the transmitted frame. 
 */ 

/* 
 * Applied by the NIC scheduler when the transmission process shall perform 
 * the next transition of the NIC. It identifies and applies the step function 
 * that performs the actual transition. 
 */ 
(nic_state, mem_req): transmit_frame(nic_state: nic) 

//If a transmission transition is to be performed when the transmission 
//process is waiting for a memory request there is a model bug. 
if nic.tx_p.memory_request then 

nic.dead_state := true 
return (nic, no_mem_req) 

else if nic.tx_p.nic.tx_p.transmit_step = 1 then 
return transmit_step1(nic) 

else if nic.tx_p.nic.tx_p.transmit_step = 2 then 
return transmit_step2(nic) 

else if nic.tx_p.nic.tx_p.transmit_step = 3 then 
return transmit_step3(nic) 

else if nic.tx_p.nic.tx_p.transmit_step = 4 then 
return transmit_step4(nic) 

else if nic.tx_p.nic.tx_p.transmit_step = 5 then 
return transmit_step5(nic) 
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else if nic.tx_p.nic.tx_p.transmit_step = 6 then 
return transmit_step6(nic) 

else if nic.tx_p.nic.tx_p.transmit_step = 7 then 
return transmit_step7(nic) 

else if nic.tx_p.nic.tx_p.transmit_step = 8 then 
return transmit_step8(nic) 

else 
//If a transmission transition is to be performed but the transmission 
//process is inactive or the current transition has an undefined 
//number, then this is a model bug. 
nic.dead_state := true 
return (nic, no_mem_req) 

/* 
 * Checks that the current buffer descriptor is 32-bit word aligned and 
 * completely located in CPPI_RAM, and initializes some model variables, and 
 * then (since these two former operations are not considered to do any 
 * hardware work) applies step function two. 
 */ 
(nic_state, mem_req): transmit_step1(nic_state: nic) 

if nic.tx_p.transmit_current_bd[1:0] ≠ 0  nic.tx_p.transmit_current_bd < 0x4A10_2000 ∨ ∨
0x4A10_4000 - 0xF ≤ nic.tx_p.transmit_current_bd then 

nic.dead_state := true 
return (nic, no_mem_req) 

else 
//Zero bytes have been read of the current buffer descriptor. 
nic.tx_p.transmit_read_buffer_descriptor_bytes := 0 
//Initializes the variables that hold the buffer descriptor words. 
nic.tx_p.transmit_current_bd_value_word0 := 0 
nic.tx_p.transmit_current_bd_value_word1 := 0 
nic.tx_p.transmit_current_bd_value_word2 := 0 
nic.tx_p.transmit_current_bd_value_word3 := 0 

//Step function 2 shall be applied next. 
nic.tx_p.transmit_step := 2 
return transmit_step2(nic) 

/* 
 * Each application of this function reads the next byte of the current buffer 
 * descriptor from CPPI_RAM. When the last byte has been read transmit_step is 
 * set to 3 to make step 3 perform the next transition the next time the 
 * transmission process is scheduled. 
 * 
 * A byte is inserted into the transmit_current_bd_value_wordx variable by 
 * shifting it into its right position and then doing bitwise OR with it and 
 * the current value of transmit_current_bd_value_wordx variable and storing 
 * the result in that same variable. 
 */ 
(nic_state, mem_req): transmit_step2(nic_state: nic) 

nat: bit_shift := (nic.tx_p.transmit_read_buffer_descriptor_bytes % 4) * 8 
word8: bd_byte := nic.regs.CPPI_RAM(nic.tx_p.transmit_current_bd - 0x4A10_2000 +

nic.tx_p.transmit_read_buffer_descriptor_bytes) 

if nic.tx_p.transmit_read_buffer_descriptor_bytes < 4 then 
nic.tx_p.transmit_current_bd_value_word0 :|= bd_byte << bit_shift 

else if nic.tx_p.transmit_read_buffer_descriptor_bytes < 8 then 
nic.tx_p.transmit_current_bd_value_word1 :|= bd_byte << bit_shift 

else if nic.tx_p.transmit_read_buffer_descriptor_bytes < 12 then 
nic.tx_p.transmit_current_bd_value_word2 :|= bd_byte << bit_shift 

else if transmit_read_buffer_descriptor_bytes < 16 then 
nic.tx_p.transmit_current_bd_value_word3 :|= bd_byte << bit_shift 

else 
//This function should not be applied if there are no more buffer 
//descriptor bytes to read. That is, a model bug. 
nic.dead_state := true 
return (nic, no_mem_req) 

//One additional byte has been read of the current buffer descriptor. 
nic.tx_p.transmit_read_buffer_descriptor_bytes :+= 1 

//Step 3 shall perform the next NIC transition if all bytes have been read. 
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if nic.tx_p.transmit_read_buffer_descriptor_bytes ≥ 16 then 
nic.tx_p.transmit_step := 3 

return (nic, no_mem_req) 

/* 
 * Checks that the current buffer descriptor is correctly initialized. If not, 
 * then a dead state is entered according to the following checks on the 
 * current buffer descriptor: 
 * -A SOP buffer descriptor is expected but the SOP bit is cleared. 
 * -A non-SOP buffer descriptor is expected but the SOP bit is set. 
 * -It is an expected SOP buffer descriptor but, either the ownership bit is 
 *  cleared or the buffer offset field is greater than or equal to the buffer 
 *  length field. 
 * -The buffer length field is zero or the EOQ bit is set. 
 * 
 * If all checks are passed, then some variables are initialized such that: 
 * -The SOP buffer descriptor can be accessed by later step functions. 
 * -The packet length field of a SOP buffer descriptor can be checked to be 
 *  correct. 
 * -It is known where to start fetch bytes from of the associated data buffer. 
 * 
 * Finally, step function 4 is applied. 
 */ 
(nic_state, mem_req): transmit_step3(nic_state: nic) 

//Retrieves the buffer pointer, offset and length fields 
word32: transmit_buffer_pointer := nic.tx_p.transmit_current_bd_value_word1 
word32: transmit_buffer_offset := nic.tx_p.transmit_current_bd_value_word2[31:16] 
nic.tx_p.transmit_buffer_length := nic.tx_p.transmit_current_bd_value_word2[15:0] 

//Checks if it is a SOP descriptor and in that case that everyting is setup 
//correctly. 
//Expects a SOP but it isn't. 
if nic.tx_p.transmit_expect_sop   nic.tx_p.transmit_current_bd_value_word3[31] = 0 then ∧

nic.dead_state := true 
return (nic, no_mem_req) 

//Does not expect a sop but it is. 
else if ¬nic.tx_p.transmit_expect_sop  nic.tx_p.transmit_current_bd_value_word3[31] = 1 then ∧

nic.dead_state := true 
return (nic, no_mem_req) 

//Expects SOP and it is. 
else if nic.tx_p.transmit_expect_sop  nic.tx_p.transmit_current_bd_value_word3[31] = 1 then ∧

//Ownership bit must be set in SOP buffer descriptor. 
if nic.tx_p.transmit_current_bd_value_word3[29] = 0 then 

nic.dead_state := true 
return (nic, no_mem_req) 

//Buffer offset must be smaller than the buffer length. This is only 
//checked on SOP buffer descriptors since the buffer offset is only 
//valid in them. From the NIC specification: "The host sets the 
//buffer_offset value (which may be zero to the buffer length minus 1). 
//Valid only on sop." 
else if transmit_buffer_offset ≥ nic.tx_p.transmit_buffer_length then 

nic.dead_state := true 
return (nic, no_mem_req) 

//Records the address of this SOP buffer descriptor, since it is needed 
//later to clear the ownership bit. 
nic.tx_p.transmit_sop_bd_physical_address := nic.tx_p.transmit_current_bd 

//The SOP buffer descriptor is now consumed. It is set again when an 
//EOP buffer descriptor is encountered or when TX0_HDP is set. 
nic.tx_p.transmit_expect_sop := false 

//Retrieves the packet length field which is needed for later use to 
//check that the packet length field is of correct length: Equal to the 
//sum of the buffer length fields of all buffer descriptors of the 
//current frame under transmission. Therefore is 
//transmit_sum_buffer_length initialized to the buffer length field of 
//the first buffer descriptor of the current frame to transmit. 
nic.tx_p.transmit_sop_packet_length := nic.tx_p.transmit_current_bd_value_word3[10:0] 
nic.tx_p.transmit_sum_buffer_length := nic.tx_p.transmit_buffer_length 

//If the current buffer descriptor is not a SOP and a SOP is not expected, 
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//then the buffer descriptor's buffer length field is used to increment 
//transmit_sum_buffer_length. 
else 

nic.tx_p.transmit_sum_buffer_length :+= nic.tx_p.transmit_buffer_length 

//The buffer length must be greater than zero and the EOQ bit cleared. 
if nic.tx_p.transmit_buffer_length = 0  nic.tx_p.transmit_current_bd_value_word3[28] = 1 then ∨

nic.dead_state := true 
return (nic, no_mem_req) 

//Sets the address of the next byte to be fetched from memory. 
transmit_next_buffer_byte_address := transmit_buffer_pointer 
//If this is a SOP then the buffer offset must be added to start fetching 
//the frame bytes from the right position. The offset field is only valid 
//in SOP buffere descriptors. 
if transmit_current_bd_value_word3[31] = 1 then 

transmit_next_buffer_byte_address :+= transmit_buffer_offset 

//Since this step function is considered to not do any hardware work, step 
//function four is applied. 
nic.tx_p.transmit_step := 4 
return transmit_step4(nic) 

/* 
 * Issues memory read requests of one byte for each application of this 
 * function from the associated data buffer of the current buffer descriptor. 
 * The NIC scheduler can only apply this step function if the variable 
 * memory_request is falsified. That occurs by the framework when it applies 
 * memory_request_byte_reply and memory_request_byte_reply considers the 
 * memory request reply to be correct. When all memory requests have been 
 * issued, step function five will be applied the next time the transmission 
 * process is to make a transition. 
 * 
 * If the buffer descriptor wraps around the memory border, or access memory 
 * outside RAM, then a dead state is entered. The RAM addresses on BeagleBone
 * Black is [0x8000_0000, 0x8000_0000 + 0x2000_0000), 512 MB.
 */ 
(nic_state, mem_req): transmit_step4(nic_state: nic) 

//It is a model bug if this step function is applied when it should not be. 
if nic.tx_p.memory_request = true  nic.tx_p.transmit_buffer_length = 0 then ∨

nic.dead_state := true 
return (nic, no_mem_req) 

else 
//Increments the address for next access. 
nic.tx_p.transmit_next_buffer_byte_address :+= 1 
//A memory request is pending. 
nic.tx_p.memory_request := true 
//One byte request less to make. 
nic.tx_p.transmit_buffer_length :-= 1 

//All memory requests have been issued. 
if nic.tx_p.transmit_buffer_length = 0 then 

nic.tx_p.transmit_step := 5 
//Checks if the next memory request address wraps around or addresses 
//memory outside RAM. 
else if nic.tx_p.transmit_next_buffer_byte_address = 0  ∨

nic.tx_p.transmit_next_buffer_byte_address - 1 < 0x8000_0000  ∨
nic.tx_p.transmit_next_buffer_byte_address - 1 ≥ 0xA000_0000 then 

nic.dead_state := true 
return (nic, no_mem_req) 

//Returns a tuple that represents a memory read request. 
//mem_req = (valid, read, address, value). 
return (nic, (true, true, nic.tx_p.transmit_next_buffer_byte_address - 1, 0)) 

/* 
 * The following function steps (step 5 to 8) configures bits in the the SOP 
 * and EOP buffer descriptors, if the currently processed buffer descriptor 
 * is of type EOP: 
 * 1. Sets the EOQ bit if it is the last buffer descriptor in the transmit 
 * queue. 
 * 2. Clears the Ownership bit in the SOP buffer descriptor. Also clears the 
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 * TX0_HDP register if this is the last buffer descriptor in the transmit 
 * queue. 
 * 3. Writes the physical address of the EOP buffer descriptor of the 
 * transmitted frame to the TX0_CP register. 
 */ 

/* 
 * transmit_step5 considers three cases: 
 * 1. If the current buffer descriptor is not of type EOP but is the last one 
 * of the current frame under transmission, then this is an error. 
 * 2. If the current buffer descriptor is not of type EOP and is not the last 
 * of the current frame under transmission, then the next buffer 
 * descriptor is processed by applying step function one with 
 * transmit_current_bd pointing to the next buffer descriptor. 
 * 3. Otherwise the current buffer descriptor is of type EOP and 
 * transmit_step6 is applied since no hardware work was done. 
 */ 
(nic_state, mem_req): transmit_step5(nic_state: nic) 

if nic.tx_p.transmit_current_bd_value_word3[30] = 0  nic.tx_p.transmit_current_bd_value_word0 = 0 then ∧
nic.dead_state := true 
return (nic, no_mem_req) 

else if nic.tx_p.transmit_current_bd_value_word3[30] = 0  nic.tx_p.transmit_current_bd_value_word0 ≠ 0 then ∧
nic.tx_p.transmit_current_bd := nic.tx_p.transmit_current_bd_value_word0 
nic.tx_p.transmit_step := 1 
return transmit_step1(nic) 

else 
return transmit_step6(nic) 

/* 
 * A misqueue condition is detected when the following three conditions are 
 * true: 
 * -SOP has cleared ownership bit 
 * -EOP has set EOQ bit 
 * -EOP has non-zero Next Descriptor Pointer field. 
 * 
 * Cnsider the following additional statements derived from the specification:
 * -A misqueue condition is corrected by writing TX0_HDP with the new buffer 
 * descriptor. 
 * -Writing TX0_HDP when it is not zero is an error. 
 * -TX0_HDP is zero after transmission is complete. 
 * -TX0_HDP is written to initiate new transmission. 
 * 
 * These five conditions imply that when a misqueue condition occurs, TX0_HDP 
 * is zero. They also imply that when TX0_HDP is zero, then all buffer descriptors
 * are released by the NIC and the NIC will not modify them any more. 
 * 
 * That is, when the Ownership and EOQ bits are cleared and set, then TX0_HDP 
 * must be cleared. When TX0_HDP is cleared, the ownership and EOQ bits be 
 * cleared and set. 
 * 
 * Since the ownership bit must be cleared after the EOQ bit is set. The EOQ 
 * bit is set first and then are the ownership bit and the TX0_HDP cleared 
 * atomically. This corresponds to steps 6 and 7. 
 */ 

/* 
 * Sets the EOQ bit if this is the last buffer descriptor in the transmission 
 * queue. Also checks that the sum of the buffer length fields of the frame's 
 * buffer descriptors is not too big and that it is equal to the packet length 
 * field of the SOP buffer descriptor. 
 */ 
(nic_state, mem_req): transmit_step6(nic_state: nic) 

//Checks errors first. If the sum of the buffer length fields is to big or 
//that sum is not equal to the packet length field of the SOP buffer 
//descriptor, at the time when it was read, then the NIC enters a dead 
//state. 
if nic.tx_p.transmit_sum_buffer_length ≥ 0x800 ∨

nic.tx_p.transmit_sop_packet_length ≠ nic.tx_p.transmit_sum_buffer_length then 
nic.dead_state := true 
return (nic, no_mem_req) 

//This is EOP but next buffer descriptor shall be a SOP. 
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nic.tx_p.transmit_expect_sop := true 

nic.tx_p.transmit_step := 7 

//Sets EOQ in last buffer descriptor. 
if nic.tx_p.transmit_current_bd_value_word0 = 0 then 

nic.regs.CPPI_RAM(nic.tx_p.transmit_current_bd - 0x4A10_2000 + 15)[4] := 1 
return (nic, no_mem_req) 

else 
return transmit_step7(nic) 

/* 
 * Clears the ownership bit and the TX0_HDP register. 
 */ 
(nic_state, mem_req): transmit_step7(nic_state: nic) 

//Clears ownership bit. 
nic.regs.CPPI_RAM(nic.tx_p.transmit_sop_bd_physical_address - 0x4A10_2000 + 15)[5] := 0 

//Clears TX0_HDP. 
if nic.tx_p.transmit_current_bd_value_word0 = 0 then 

nic.regs.TX0_HDP := 0 

//Stores the physical address of the EOP buffer descriptor used to write 
//TX0_CP. 
nic.tx_p.transmit_eop_bd_physical_address = nic.tx_p.transmit_current_bd 

//Advances the buffer descriptor pointer. 
nic.tx_p.transmit_current_bd := nic.tx_p.transmit_current_bd_value_word0 

nic.tx_p.transmit_step := 8 
return (nic, no_mem_req) 

/* 
 * TX0_CP is set to the physical address of the currently transmitted frame's 
 * EOP buffer descriptor. A frame transmission completion interrupt is 
 * asserted non-deterministically since the interrupt related registers are 
 * not modeled. If there are no more frames to transmit or if there is are 
 * pending initialization or transmission teardown processes, then the 
 * transmission process gets terminated. Otherwise there are no pending 
 * initialization or transmission teardown processes and there are more frames 
 * to transmit and the transmission process start from beginning again. 
 */ 
(nic_state, mem_req): transmit_step8(nic_state: nic) 

nic.regs.TX0_CP := nic.tx_p.transmit_eop_bd_physical_address 
if choice_non-deterministically({false, true}) then 

nic.tx_p.interrupt := true 
nic.interrupt := true 

if nic.tx_p.transmit_current_bd = 0  nic.tx_td_p.transmit_teardown_step = 1  nic.init_p.init_step = 1 then ∨ ∨
nic.tx_p.transmit_step := 0 

else 
nic.tx_p.transmit_step := 1 

return (nic, no_mem_req) 

/* 
 * @memory_reply: The reply of the earlier issued memory request made in step 
 * four. 
 * 
 * This function is applied by the device model framework to reply to an 
 * earlier memory read request issued by step function four of the 
 * transmission process. If the given "memory request" matches the expected 
 * reply of the memory request issued by step function four, then that memory 
 * request is considered satisfied and memory_request is falsified. Otherwise 
 * a dead state is entered. 
 * 
 * The transmission process should be at step four (transmit_step = 4) when 
 * this step function is applied, because that is where the memory requests 
 * are issued. 
 */ 
nic_state: memory_request_byte_reply(nic_state: nic, mem_req: memory_reply) 
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if nic.tx_p.memory_request  memory_reply.valid  memory_reply.read ∧ ∧ ∧
memory_reply.address = nic.tx_p.transmit_next_buffer_byte_address - 1 then 

nic.tx_p.memory_request := false 
else 

nic.dead_state := true 

return nic

C.9 Transmission Teardown Automaton
/* 
 * The following functions represents the operations of the transmission 
 * teardown process, which terminates the transmission process of the NIC. 
 * This transmission teardown process of the NIC gets activated when 
 * TX_TEARDOWN is written to zero. The transmission teardown process can start 
 * as soon as the transmission process has finished the processing of the 
 * frame currently being transmitted. 
 * 
 * When the teardown process starts, transmit_current_bd points to the first 
 * buffer descriptor that is unused by the transmission process after the 
 * transmission process has terminated. If there is none, then 
 * transmit_current_bd is zero. This potentially existing buffer descriptor 
 * gets some of its fields modified by the this transmission teardown process. 
 * This is done by the following step functions: 
 * 1. Non-deterministically sets the EOQ bit in the first unused buffer 
 * descriptor after the terminated transmission process, if there is one. 
 * 2. Sets the teardown bit in the first unused buffer descriptor, if it 
 * there is one. 
 * 3. Clears TX0_HDP and the ownership bit in the first unused buffer 
 * descriptor, if there is one. 
 * 4. Writes the teardown acknowledgement code 0xFFFFFFFC in the TX0_CP 
 * register. 
 */ 

/* 
 * Function: Called by the NIC scheduler when the NIC transmission teardown 
 * process is to make its next transition. 
 */ 
(nic_state, mem_req): transmit_teardown(nic_state: nic) 

if nic.tx_td_p.transmit_teardown_step = 1 then 
return transmit_teardown_step1(nic) 

else if nic.tx_td_p.transmit_teardown_step = 2 then 
return transmit_teardown_step2(nic) 

else if nic.tx_td_p.transmit_teardown_step = 3 then 
return transmit_teardown_step3(nic) 

else if nic.tx_td_p.transmit_teardown_step = 4 then 
return transmit_teardown_step4(nic) 

else 
nic.dead_state := true 
return (nic, no_mem_req) 

/* 
 * Sets the EOQ bit non-deterministically since it is not specified by the NIC 
 * specification that this operation is actually performed for teardowns. By 
 * tests on the real hardware, it can be seen that the bit is set. As a 
 * compromise between actual implementation and the specification, it is set 
 * non-deterministically. 
 */ 
(nic_state, mem_req): transmit_teardown_step1(nic_state: nic) 

nic.tx_td_p.transmit_teardown_step := 2 
if choice_non-deterministically(bool)  nic.tx_p.transmit_current_bd ≠ 0 then ∧

nic.regs.CPPI_RAM(nic.tx_p.transmit_current_bd - 0x4A10_2000 + 15)[4] := 1 
return (nic, no_mem_req) 

else 
return transmit_teardown_step2()  

/* 
 * Sets the teardown bit on the potentially first unused buffer descriptor in 
 * the transmission queue. If no such buffer descriptor exists, step 3 is 
 * applied since then no hardware work is performed by this function. 
 */ 
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(nic_state, mem_req): transmit_teardown_step2(nic_state: nic) 
nic.tx_td_p.transmit_teardown_step := 3 
if nic.tx_p.transmit_current_bd ≠ 0 then 

nic.regs.CPPI_RAM(nic.tx_p.transmit_current_bd - 0x4A10_2000 + 15)[3] := 1 
return (nic, no_mem_req) 

else 
return transmit_teardown_step3() 

/* 
 * Clears TX0_HDP and the ownership bit of the potentially existing first 
 * unused buffer descriptor. This is done atomically to be consistent with the 
 * transmission process which also performs these two operations atomically. 
 * This indicates to software that the teardown bit is valid since this bit is 
 * cleared when the NIC is done with a buffer descriptor. 
 */ 
(nic_state, mem_req): transmit_teardown_step3(nic_state: nic) 

nic.tx_td_p.transmit_teardown_step := 4 
nic.regs.TX0_HDP := 0 

if nic.tx_p.transmit_current_bd ≠ 0 then 
nic.regs.CPPI_RAM(nic.tx_p.transmit_current_bd - 0x4A10_2000 + 15)[5] := 0 
nic.tx_p.transmit_current_bd := 0 

else 
nic.tx_p.transmit_current_bd := 0 
return transmit_teardown_step4() 

return (nic, no_mem_req) 

/* 
 * Sets TX0_CP to the teardown completion code and transmit_teardown_step to 
 * zero to indicate that the teardown process has terminated. 
 * 
 * A reception teardown interrupt is asserted non-deterministically since the 
 * interrupt related registers are not modeled. 
 */ 
(nic_state, mem_req): transmit_teardown_step4(nic_state: nic) 

nic.regs.TX0_CP := 0xFFFFFFFC 
nic.tx_td_p.transmit_teardown_step := 0 
if choice_non-deterministically(bool) then 

nic.tx_p.interrupt := true 
nic.interrupt := true 

return (nic, no_mem_req)

C.10 NIC Registers Related to Interrupts
This section describes which NIC registers that need to be modeled in order to 
accurately specify how the NIC asserts the interrupts that are used by Linux. The 
NIC can assert four different interrupts:

• Frame transmission/reception completion interrupts: Is asserted when the 
NIC writes TX0_CP/RX0_CP with the physical address of the EOP buffer 
descriptor of the most recently transmitted/received frame, and is 
deasserted when the CPU writes TX0_CP/RX0_CP with the value it 
currently contains.

• Receive threshold interrupt: Is asserted when the number of free buffer 
descriptors in the receive queue channel zero gets below a certain 
(configurable) value, and is deasserted when the CPU writes the RX0_CP 
register with the content of that register.

• Miscellaneous interrupts: Is asserted when events occur that are related to 
timing, statistics, errors and the physical link.

This subsection explains how the first two interrupts can be added to the NIC 
model. These are the two interrupts that are used by the NIC driver in Linux 3.10.
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To accurately model frame transmission completion interrupts, the following 
registers must be added to the model:

• C0_TX_EN: Bit b is set to one by the CPU to enable transmission DMA 
channel b completion interrupts.

• C0_TX_STAT: Read only register with bit b set by the NIC if interrupts 
from transmission DMA channel b are enabled and channel b asserts an 
interrupt.

• TX_INTMASK_SET: Bit b is set to one by the CPU to enable the NIC 
DMA engine to generate interrupts for transmission DMA channel b.

• TX_INTMASK_CLEAR: Bit b is set to one by the CPU to disable the NIC 
DMA engine to generate interrupts for transmission DMA channel b. It is 
unspecified what happens to bit b in this and the TX_INTMASK_SET 
register when bit b is set in these two registers. They could be registers that 
are always read as zero.

• TX_INTSTAT_RAW: Read only register with bit b set to one if the NIC 
DMA engine asserts an interrupt for transmission channel b, even though it 
is disabled (by setting bit b in TX_INTMASK_CLEAR).

• TX_INTSTAT_MASKED: Read only register with bit b set to one if the 
NIC DMA engine asserts an interrupt for transmission channel b and that 
interrupt is enabled (by writing a one to bit b of the TX_INTMASK_SET 
register).

The corresponding registers for the frame reception completion interrupts behave 
identically as for the frame transmission completion interrupts: C0_RX_EN, 
C0_RX_STAT, RX_INTMASK_SET, RX_INTMASK_CLEAR, 
RX_INTSTAT_RAW, and RX_INTSTAT_MASKED.

The end of interrupt register, CPDMA_EOI_VECTOR, has five relevant bits. The 
software writes this register to two/one immediately after it has acknowledged a 
frame transmission/reception interrupt by writing the TX0_CP/RX0_CP register.
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Appendix D Sub-Execution Trace in Real 
Model
This section illustrates what the execution traces of the real model look like, and 
how the traces are constructed and their states modified by applying the transition 
rules that defines the real model. It will also be shown how the non-determinism of
some of the NIC transition rules is handled when applying such transition rules, 
and how the method of applying transition rules makes it unnecessary to define the
non-deterministic scheduler of the device model framework.

Assume that the state (cpu0, memory0, nic0) has the following properties:

• The MMU maps the program counter (cpu0.uregs.r15) to physical address 
0x0.

• The instruction in memory at 0x0 is 'ADD R0, R1, R2', which adds the 
numbers in cpu0.uregs.r1 and cpu0.uregs.r2 and stores the result in 
cpu0.uregs.r0 (0x0 is not a part of RAM but chosen for simplicity):

memory0(0x3) :: memory0(0x2) :: memory0(0x1) :: memory0(0x0) =
'ADD R0, R1, R2'.

• The first three user registers have the following content:

cpu0.uregs.r0 = 0  ∧ cpu0.uregs.r1 = 1  ∧ cpu0.uregs.r2 = 2.

• The NIC is in a state such that it can perform the last step of the 
transmission teardown process with TX0_CP set to 0x4A102800:

¬nic0.dead_state ∧
nic0.tx_td_p.transmit_teardown_step = 4  ∧ nic0.tx_p.transmit_step = 0 ∧

nic0.regs.TX0_CP = 0x4A10_2800.

An execution trace with two transitions starting from (cpu0, memory0, nic0) can be 
constructed as follows, where the first transition is performed by the CPU and the 
second by the NIC. The trace is constructed by applying the transition rules that 
defines the real model. In order to do that, their premises must be true. When the 
premise of a transition rule is true, that transition rule can be used to generate a 
transition. If several transition rules have their premises true simultaneously, then 
any one of them can be applied leading to several possible transitions from a given 
state. This is the reason why the transition rules do not need to consider the non-
deterministic system scheduler of the device model framework.

The first transition is (cpu0, memory0, nic0) →CPU (cpu1, memory1, nic1). It is 
generated by the CPU transition rule that only affects the CPU and the memory:

(cpu, memory) →ARMv7 (cpu', memory')  ¬∧ nic_access(cpu, memory)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––.

(cpu, memory, nic) →{CPU, EXC, EXC_RET} (cpu', memory', nic)

This transition rule is instantiated as:
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(cpu0, memory0) →ARMv7 (cpu1, memory1)  ¬∧ nic_access(cpu0, memory0)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––.

(cpu0, memory0, nic0) →CPU (cpu1, memory1, nic1)

According to the ARMv7 specification, the CPU will execute the ADD instruction,
and not access the memory (except for instruction fetch) or the NIC. This means 
that ¬nic_access(cpu0, memory0) = true and cpu1.uregs.r0 = 3. Since memory0 and 
nic0 are not modified, memory0 = memory1 and nic0 = nic1.

The second transition is (cpu1, memory1, nic1) →NIC (cpu2, memory2, nic2). It is 
generated by the transition rule for autonomous transitions without memory 
requests:

nic →nic(false, read, pa, val) nic'
––––––––––––––––––––––––––––––––––––.
(cpu, memory, nic) →NIC (cpu, memory, nic')

This transition rule is instantiated as:

nic1 →nic(false, false, 0, 0) nic2

–––––––––––––––––––––––––––––––––––––––,
(cpu1, memory1, nic1) →NIC (cpu2, memory2, nic2)

where read, pa and val has been assigned the values false, 0 and 0, respectively. 
The transition of the premise in this transition rule is generated by a NIC model 
transition rule. The transition rule of the NIC model that generates such a transition
is:

(nic', (valid, read, pa, val), int) = nic_scheduler(nic)
––––––––––––––––––––––––––––––––––––––––––.

nic →nic(valid, read, pa, val) nic'

This transition rule is instantiated as:

(nic2, (false, false, 0, 0), true) = nic_scheduler(nic1)
––––––––––––––––––––––––––––––––––––––––––.

nic1 →nic(false, false, 0, 0) nic2

where int has been assigned the value true. Now it must be established that 
nic_scheduer(nic1) can return the value (nic2, (false, false, 0, 0), true).

By investigating the pseudocode of nic_scheduler, it can be seen that the element 
transmit_teardown is added to P since

¬nic1.dead_state ∧
nic1.tx_td_p.transmit_teardown_step = 4  ∧ nic1.tx_p.transmit_step = 0

holds. Since nic_scheduler non-deterministically selects an element in P, an 
arbitrary element in P can be chosen when applying this rule and therefore is the 
element transmit_teardown a valid selection. nic_scheduer then applies 
transmit_teardown which in turn applies transmit_teardown_step4. 
transmit_teardown_step4 sets TX0_CP to 0xFFFFFFFC, transmit_teardown_step 
to 0, non-deterministically sets the interrupt flag and then returns the modified NIC
state along with an empty memory request: (nic2, no_mem_req), where 
no_mem_req is equal to (false, false, 0, 0). Since the interrupt flag is set non-
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deterministically, can it be chosen to be set to true. nic_scheduler can therefore 
return

(nic2, (false, false, 0, 0), true).

This is consistent with the premise of the NIC transition rule above, which 
therefore generates the transition nic1 →nic(false, false, 0, 0) nic2. This also makes the 
premise true for the transition rule for autonomous transitions without memory 
requests of the real model, which therefore generates the transition

(cpu1, memory1, nic1) →NIC (cpu2, memory2, nic2),

where cpu1 = cpu2  ∧ memory1 = memory2 since the CPU and the memory are not 
accessed by this NIC transition.

The final trace is therefore

(cpu0, memory0, nic0) →CPU (cpu1, memory1, nic1) →NIC (cpu2, memory2, nic2).

Since the two transition rules depend on and manipulate disjunct state components 
can they be reordered without leading to the premises of their transition rules 
becoming false. This gives another trace:

(cpu0, memory0, nic0) →NIC (cpu3, memory3, nic3) →CPU (cpu2, memory2, nic2),

where the intermediate state (cpu3, memory3, nic3) is different from (cpu1, memory1,
nic1), but where the start and end states are unmodified. Some of the state 
components of the final state (cpu2, memory2, nic2) has the following values:

• User register zero (except for the program counter) has been modified:

cpu0.uregs.r0 = 3  ∧ cpu0.uregs.r1 = 1  ∧ cpu0.uregs.r2 = 2.

• transmit_teardown_step and TX0_CP has been modified:

¬nic0.dead_state ∧
nic0.tx_td_p.transmit_teardown_step = 0  ∧ nic0.tx_p.transmit_step = 0 ∧

nic0.regs.TX0_CP = 0xFFFFFFFC.
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Appendix E Definition of SEC
This appendix formally defines the security invariant SEC, which is defined as the 
conjunction of CPU_MEMORY and NIC. First is some notation described together 
with some definitions of functions and predicates that are used to define SEC. 
Second is CPU_MEMORY defined and third NIC. The last section lists which state 
components each predicate of SEC depends on.

E.1 Notation and Definitions
As in Section 6.1, functions that are defined using classic mathematical notation 
are defined by means of the symbol ' ', and the other definitions are according to ≝
the pseudocode syntax described in Appendix A. '[' and ']' are used as regular 
parentheses. Also, NIC transitions s → t that correspond to a memory access at 
physical address pa reading or writing the value v have the labels 
nic_memory_read(pa,v) or nic_memory_write(pa,v), respectively.

Some definitions that are used in several predicates:

• CPPI_RAM = 0x4A102000: First physical address of CPPI_RAM.

• word32: cppi_ram_word(ideal_state: i, word32: bd_ptr) returns the 32-bit 
word stored in CPPI_RAM at the physical address bd_ptr in the state i:

word32: cppi_ram_word(ideal_state: i, word32: bd_ptr):
return i.nic.regs.CPPI_RAM(bd_ptr – CPPI_RAM + 3) ::

i.nic.regs.CPPI_RAM(bd_ptr – CPPI_RAM + 2) ::
i.nic.regs.CPPI_RAM(bd_ptr – CPPI_RAM + 1) ::
i.nic.regs.CPPI_RAM(bd_ptr – CPPI_RAM).

• {word32}: queue(ideal_state: i, word32: bd_ptr) returns the set of physical 
addresses of all buffer descriptors in the queue pointed to by the physical 
address bd_ptr:

{word32}: queue(ideal_state: i, word32: bd_ptr):
if bd_ptr = 0 then

return {}
else

return {bd_ptr}  queue(∪ i, cppi_ram_word(i, bd_ptr)).

• {word32}: bd_addresses(word32: bd_ptr) returns the set of physical byte 
addresses in CPPI_RAM that the buffer descriptor at the physical address 
bd_ptr uses.

{word32}: bd_addresses(word32: bd_ptr) ≝
{a | bd_ptr ≤ a ≤ bd_ptr + 0xF}.

• (word32, word32): first_last_tx_block_index(ideal_state: i, word32: bd_ptr)
returns the block indexes of the first and last physical addresses of the 
memory region that the transmission buffer descriptor at physical address 
bd_ptr specifies:
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(word32, word32): first_last_tx_block_index(ideal_state: i,
word32: bd_ptr):

word32: f := cppi_ram_word(i, bd_ptr + 4)
word32: l := cppi_ram_word(i, bd_ptr + 4) +

cppi_ram_word(i, bd_ptr + 8)[15:0] – 1
word32: offset:= cppi_ram_word(i, bd_ptr + 8)[31:16])
if cppi_ram_word(i, bd_ptr + 12)[31] = 0b1 then

return ((f + offset)[31:12],  (l + offset)[31:12])
else

return (f[31:12], l[31:12]).

• {word20}: allocated_tx_blocks(ideal_state: i, word32: bd_ptr) returns the 
block indexes of the blocks accessed by the transmission buffer descriptor 
at physical address bd_ptr.

{word20}: allocated_tx_blocks(ideal_state: i, word32: bd_ptr) ≝
{bl | ∃f, l  word20. (∈ f, l) = first_last_tx_block_index(i, bd_ptr) ∧

bl  [∈ f, l]}.

• {word20}: allocated_rx_blocks(ideal_state: i, word32: bd_ptr) returns the 
block indexes of all memory blocks accessed by the receive buffer 
descriptor at bd_ptr, by reading i.oracle.recv_bd_nr_blocks. The offset 
field is not considered since RX_BUFFER_OFFSET is required to be zero. 
x >> y means shifting x y bits to the right and inserting zeros at the most 
significant bits.

{word20}: allocated_rx_blocks(ideal_state: i, word32: bd_ptr) ≝
[cppi_ram_word(i, bd_ptr + 4)[31:12],
 cppi_ram_word(i, bd_ptr + 4)[31:12] +
 (i.oracle.recv_bd_nr_blocks((bd_ptr – CPPI_RAM) >> 2) – 1)].

• NIC_execution(ideal_state: i) returns the set of all possible execution traces
that start from the state i and where only NIC transitions are made by 
means of the transition rules used to define the ideal model, and the NIC is 
idle in the end state (meaning that successive autonomous transitions does 
not manipulate the NIC state).

• [(word20, bool, bool, bool)]: PTL1(ideal_state: i, word20: pt): Returns a list
with entries that contain information about how each block is mapped by 
the block pt, by interpreting pt as a first-level page table. If pt is mapping a 
block bl with with read, write and execute access permissions as indicated 
by the boolean variables rd, wt and ex, then is the tuple (bl, rd, wt, ex) in the
list PTL1(i, pt). Entries that are free or correspond to second-level pointers 
are not in the returned list.

• [(word20, bool, bool, bool)]: PTL2(ideal_state: i, word20: pt): As PTL2 but
interprets pt as a second-level page table.

E.2 Definition of CPU_MEMORY
CPU_MEMORY is defined as:
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CPU_MEMORY(ideal_state: i) ≝
WT_EX_REF(i)  ∧ SOUND_PT(i)  ∧ CONST_PT(i)  ∧ SOUND_MMU(i) ∧

IN_LINUX(i).

These predicates are described and defined in the following subsections.

E.2.1 WT_EX_REF

WT_EX_REF:

ρwt and ρex is correct: ρwt(bl) and ρex(bl) records the number of page table entries in 
L1 and L2 blocks that map bl as writable and executable, respectively.

This property allows security related decisions to be based on ρwt and ρex.

In the formula below, the jth entry of a list l is accessed as l[j].

bool: WT_EX_REF(ideal_state: i) ≝
[∀bl  word20.∈

i.oracle.ρwt(bl) = |{(pt, j) | ∃pt  word20.∈
i.oracle.τ(pt) = L1  (∧ bl, rd, wt, ex) = PTL1(i, pt)[j]  ∧ wt ∨
i.oracle.τ(pt) = L2  (∧ bl, rd, wt, ex) = PTL2(i, pt)[j]  ∧ wt}|]

∧
[∀bl  word20.∈

i.oracle.ρex(bl) = |{(pt, j) | ∃pt  word20.∈
i.oracle.τ(pt) = L1  (∧ bl, rd, wt, ex) = PTL1(i, pt)[j]  ∧ ex ∨
i.oracle.τ(pt) = L2  (∧ bl, rd, wt, ex) = PTL2(i, pt)[j]  ∧ ex}|]

Since pt identifies a unique page table and j a unique entry of that page table, each 
tuple represents exactly one unique page table entry.

E.2.2 SOUND_PT

SOUND_PT:

All L1 and L2 blocks have secure access permissions: Linux blocks are not both 
executable and writable, and if they are executable then their content is signed. In 
addition, all second-level entries of L1 blocks are referring to L2 blocks.

This property is used (with other predicates) to enforce Linux to only execute 
signed code.

Some help predicates are used to define SOUND_PT:

• bool: SOUNDW X⊕ (ideal_state: i, bool: wt, bool: ex, word20: bl) is used to 
state that a block mapped by a page table entry is not both writable and 
executable, and no other page table entry of any potential page table is in 
conflict with it (due to the inclusion of ρwt and ρex).

bool: SOUNDW X⊕ (ideal_state: i, bool: wt, bool: ex, word20: bl) ≝
(ex  ¬⇒ wt  ∧ i.oracle.ρwt(bl) = 0)  (∧ wt  ¬⇒ ex  ∧ i.oracle.ρex(bl) = 0).

• bool: SOUNDS(ideal_state: i, bool: ex, bool: bl) is used to state that an 
executable block is signed according to the golden image:
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bool: SOUNDS(ideal_state: i, bool: ex, bool: bl) ≝
ex  ⇒ i.oracle.sign(content(i, bl))  ∈ i.oracle.GI.

• [word32]: L2_ENTRY(ideal_state: i, word20: bl) returns the list of all 
second-level page table link entries in the L1 block bl in the state i.

• bool: L2_ENTRY_L2_BL(ideal_state: i, word20: bl) is true if and only if all 
second-level entries of an L1 block bl point to L2 blocks:

bool: L2_ENTRY_L2_BL(ideal_state: i, word20: bl) ≝
∀pte  ∈ L2_ENTRY(i, bl). i.oracle.τ(pte[31:12]) = L2.

bool: SOUND_PT(ideal_state: i) ≝
∀bl  word20.∈

[i.oracle.τ(bl) = L1
 ⇒
 [ (∀ pb, rd, wt, ex)  ∈ PTL1(i, bl).

SOUNDW X⊕ (i, wt, ex, pb)  ∧ SOUNDS(i, ex, pb)] ∧
 L2_ENTRY_L2_BL(i, bl)]]
∧
[i.oracle.τ(bl) = L2
 ⇒
 [ (∀ pb, rd, wt, ex)  ∈ PTL2(i, bl).

SOUNDW X⊕ (i, wt, ex, pb)  ∧ SOUNDS(i, ex, pb)]].

E.2.3 CONST_PT

CONST_PT:

Linux cannot write L1 or L2 blocks.

This property prohibits Linux from changing access permissions and access critical
data like the golden image in the monitor.

bool: CONST_PT(ideal_state: i) ≝
∀bl  word20.∈  i.oracle.τ(bl)  {∈ L1, L2}  ⇒ i.oracle.ρwt(bl) = 0.

E.2.4 SOUND_MMU

SOUND_MMU:

The first-level page table used by the MMU uses an L1 block as its first-level page 
table. Also, the virtual addresses of the memory containing the code of the 
hypervisor and the monitor are correctly mapped to the expected physical 
addresses, and that physical memory contain their expected code.

Together with SOUND_PT, this property forces the MMU to actually apply the 
security policy, and that the hypervisor gets control when exceptions occur.

Definitions of constants and predicates:

• word32: HYP_SIZE/MON_SIZE: The number of bytes that constitutes the 
memory image of the code of the hypervisor and the monitor, respectively. 
Should be a multiple of 4096.
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• word32: HYP_VIRT[j]/MON_VIRT[j] contains the jth virtual byte address 
that is expected to be mapped to the jth byte of the physical memory region 
allocated to the code of the hypervisor/monitor.

• word32: HYP_PHYS[j]/MON_PHYS[j] contains the jth physical byte 
address that is expected to contain the jth byte of the memory image that 
contains the code of the hypervisor/monitor. HYP_VIRT[j]/MON_VIRT[j] is
expected to be mapped by the MMU to HYP_PHYS[j]/MON_PHYS[j].

• word32: HYP_MEM[j]/MON_MEM[j] contains the expected content of the 
jth byte of the memory image that contains the code of the 
hypervisor/monitor. HYP_PHYS[j]/MON_PHYS[j] is expected to contain 
the physical address of the memory location that contains the content of 
HYP_MEM[j]/MON_MEM[j].

• bool: HVM_MAP(ideal_state: i) requires that the MMU maps the virtual 
addresses of the code of the hypervisor and the monitor to their expected 
physical addresses:

bool: HVM_MAP(ideal_state: i) ≝
[ 0 ≤ ∀ j < HYP_SIZE.

mmu(i, PL1, HYP_VIRT[j] & ~3, ex) = HYP_PHYS[j] & ~03] ∧
[ 0 ≤ ∀ j < MON_SIZE.

mmu(i, PL1, MON_VIRT[j] & ~3, ex) = MON_PHYS[j] & ~03].

The hypervisor and monitor addresses must be word aligned when given to 
the MMU which is the reason for zeroing the two least significant bits of 
the address.

bool: SOUND_MMU(ideal_state: i) ≝
i.cpu.cp15.TTBR0[11:0] & 0xFC0 = 0 ∧
i.oracle.τ(i.cpu.cp15.TTBR0[31:12]) = L1 ∧
HVM_MAP(i) ∧
[ 0 ≤ ∀ j < HYP_SIZE. i.memory(HYP_PHYS[j]) = HYP_MEM[j]] ∧
[ 0 ≤ ∀ j < MON_SIZE. i.memory(MON_PHYS[j]) = MON_MEM[j]].

The first conjunct checks that some of the least significant bits of TTBR0 are zero 
since it should specify an L1 page table block. The reason for the 0xFC0 mask is 
that some bits of the TTBR0 register have a special meaning that is not part of the 
specified L1 page table block address. Some other bits of TTBR0 are also not part 
of the L1 page table block address but they are read as zero (which is the reason 
why the mask does not only contain ones in the 12 least significant bits).

E.2.5 LINUX

LINUX:

τ is correct:

• Blocks typed as L1, L2 or D are part of Linux memory.

• Blocks typed as  are either unmapped by L1 and L2 blocks, and if they ⊥
are mapped, then are they mapped as inaccessible to Linux.
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• Blocks that correspond to NIC registers that affect which memory accesses 
the NIC does are typed as MN.

• The block that corresponds to NIC registers where no register affects which
memory accesses the NIC does is typed as N.

• Blocks belonging to the memory of the hypervisor or the monitor are typed 
as .⊥

Linux is executed in non-privileged mode with DACR[5:4] = 0b01.

The purpose of this predicate is to ensure that Linux executes in non-privileged 
mode with secure access permissions. It also allows the potential page tables to 
securely map hypervisor and monitor memory to ease the proof that the 
implementation follows the design.

Auxiliary predicates:

• bool: NO_MAP(ideal_state: i, word20: bl) is used to force the block bl to 
not be mapped by any entry in any L1 and L2 blocks.

bool: NO_MAP(ideal_state: i, word20: bl) ≝
[¬∃pt  word20, (∈ pb, rd, wt, ex)  ∈ PTL1(i, pt).

i.oracle.τ(pt) = L1  ∧ pb = bl] ∧
[¬∃pt  word20, (∈ pb, rd, wt, ex)  ∈ PTL2(i, pt).

i.oracle.τ(pt) = L2  ∧ pb = bl].

• bool: NO_AP(ideal_state: i, word20: bl) is used to state that if the block bl 
is mapped by any L1 or L2 block page table entry, then it has no access 
permissions.

bool: NO_AP(ideal_state: i, word20: bl) ≝
∀pt  word20.∈

[i.oracle.τ(pt) = L1
 ⇒
 (∀ pb, rd, wt, ex)  ∈ PTL1(i, pt). pb = bl  ¬⇒ rd  ¬∧ wt  ¬∧ ex] ∧
[i.oracle.τ(pt) = L2
 ⇒
 (∀ pb, rd, wt, ex)  ∈ PTL2(i, pt). pb = bl  ¬⇒ rd  ¬∧ wt  ¬∧ ex].

bool: IN_LINUX(ideal_state: i) ≝
[∀bl  word20.∈

[i.oracle.τ(bl)  {∈ L1, L2, D}  ⇒ bl :: 012  ∈ LINUX_MEM] ∧
[i.oracle.τ(bl) =   ⊥⇒ NO_MAP(i, bl)  ∨ NO_AP(i, bl)] ∧
[bl  {0x4A100, 0x4A102, 0x4A103}  ∈ ⇒ i.oracle.τ(bl) = MN] ∧
[bl = 0x4A101  ⇒ i.oracle.τ(bl) = N]] ∧

[∀0 ≤ j < HYP_SIZE. i.oracle.τ(HYP_PHYS[j][31:12]) = ] ⊥ ∧
[∀0 ≤ j < MON_SIZE. i.oracle.τ(MON_PHYS[j][31:12]) = ] ⊥ ∧
[Linux_exec(i)  ⇒ Linux_state(i)].

E.3 Definition of NIC
NIC is defined as:
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NIC(ideal_state: i) ≝
FINITE_WORD_ALIGNED_CPPI_RAM_QUEUES(i)  ∧ NIC_BDS(i) ∧

NO_BD_OVERLAPS(i)  ∧ NIC_DATA_NO_EXEC_CONF(i) ∧
NIC_READ_ONLY(i)  ∧ CANNOT_DIE(i)  ∧ TD_STOP_NIC(i) ∧

RECV_BD_REF(i)  ∧ INIT_TD_IDLE(i) ∧
RX_BUFFER_OFFSET_DMACONTROL_ZERO(i)  ∧ ACTIVE_CPPI_RAM(i).

Each of these predicates are presented in the following subsections by an intuitive 
meaning, their purposes and their formal definition.

E.3.1 FINITE_WORD_ALIGNED_CPPI_RAM_QUEUES

FINITE_WORD_ALIGNED_CPPI_RAM_QUEUES:

The transmit and receive queues pointed to by tx0_active_queue and 
rx0_active_queue are: completely located in CPPI_RAM, word aligned and of 
finite length.

The main reason for including this predicate is to enable computation of other 
predicates using their formal definition since some of those predicates would be 
undefined for cyclic queues or when buffer descriptor addresses are outside 
CPPI_RAM.

Necessary auxiliary predicates is:

• bool: FINITE_WORD_ALIGNED_CPPI_RAM_QUEUE(ideal_state: i,
word32: bd_ptr, {word32}: visited)

returns true if and only if the queue pointed to by the physical address 
bd_ptr is of finite length, word aligned and completely located in 
CPPI_RAM.

bool: FINITE_WORD_ALIGNED_CPPI_RAM_QUEUE(ideal_state: i,
word32: bd_ptr, {word32}: visited):

if bd_ptr = 0 then
return true

else if bd_ptr < 0x4A102000  0x4A104000 – 0x10 < ∨ bd_ptr ∨
bd_ptr[1:0] ≠ 0 then

return false
else if bd_ptr  visited then∈

return false
else

word32: next_bd_ptr := cppi_ram_word(i, bd_ptr)
return FINITE_WORD_ALIGNED_CPPI_RAM_QUEUE(i,

next_bd_ptr, {bd_ptr}  ∪ visited).

The definition of FINITE_WORD_ALIGNED_CPPI_RAM_QUEUES follows.

bool: FINITE_WORD_ALIGNED_CPPI_RAM_QUEUES(ideal_state: i) ≝
FINITE_WORD_ALIGNED_CPPI_RAM_QUEUE(i,

i.oracle.tx0_active_queue, ) ∅ ∧
FINITE_WORD_ALIGNED_CPPI_RAM_QUEUE(i,

i.oracle.rx0_active_queue, ).∅
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E.3.2 NIC_BDS

NIC_BDS:

All buffer descriptors that can potentially be in use by the transmission and 
reception processes of the NIC are in the queues pointed to by tx0_active_queue 
and rx0_active_queue, respectively, and for reception also requires correctness of 
recv_bd_nr_blocks. These variables point to either:

• A released SOP buffer descriptor that precedes buffer descriptors that are 
in use by the NIC, if the NIC has not finished the processing of the queue.

• The first non-released SOP buffer descriptor that will be used to 
transmit/store the first part of the next transmitted/received frame.

• Nothing: Contains zero if the transmission/reception process has finished 
its memory transfers.

For each buffer descriptor in the queue pointed to by rx0_active_queue, 
recv_bd_nr_blocks records the number of blocks that buffer descriptor can 
potentially access.

NIC_BDS allows the oracle to rely on tx0_active_queue, rx0_active_queue and 
recv_bd_nr_blocks when deciding whether a NIC register write request is secure or
not.

The definition of NIC_BDS is complex and requires several auxiliary functions and
predicates:

• word32: next_sop(ideal_state: i, word32: bd_ptr) returns the first SOP 
buffer descriptor in the queue pointed to by bd_ptr.

word32: next_sop(ideal_state: i, word32: bd_ptr):
if cppi_ram_word(i, bd_ptr + 12)[31] = 1 then

return bd_ptr
else

return next_sop(i, cppi_ram_word(i, bd_ptr)).

• word32: first_non_released_sop(ideal_state: i, word32: bd_ptr) returns the 
first SOP buffer descriptor that is not released in the queue pointed to by 
bd_ptr.

word32: first_non_released_sop(ideal_state: i, word32: bd_ptr):
if cppi_ram_word(i, bd_ptr + 12)[29] = 1 then

return bd_ptr
else if cppi_ram_word(i, bd_ptr + 12)[30] = 1 then

return first_non_released_sop(i, cppi_ram_word(i, bd_ptr))
else

bd_ptr := next_sop(i, cppi_ram_word(i, bd_ptr))
return first_non_released_sop(i, bd_ptr).

• bool: BD_EQ(ideal_state: i1, ideal_state: i2, word32: bd_ptr) returns true if
and only if the buffer descriptors at address bd_ptr are equal in the states i1 
and i2.
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bool: BD_EQ(ideal_state: i1, ideal_state: i2, word32: bd_ptr) ≝
cppi_ram_word(i1, bd_ptr) = cppi_ram_word(i2, bd_ptr) ∧
cppi_ram_word(i1, bd_ptr + 4) = cppi_ram_word(i2, bd_ptr + 4) ∧
cppi_ram_word(i1, bd_ptr + 8) = cppi_ram_word(i2, bd_ptr + 8) ∧
cppi_ram_word(i1, bd_ptr + 12) = cppi_ram_word(i2, bd_ptr + 12).

• {word32}: BD_ADDRESSES(ideal_state: i, word32: q) returns the set of 
physical by addresses in CPPI_RAM that are allocated to all buffer 
descriptors in the queue pointed to by q.

{word32}: BD_ADDRESSES(ideal_state: i, word32: q) ≝
{a | ∃bd_ptr  ∈ queue(q). a  ∈ bd_addresses(bd_ptr)}.

• bool: SAME_CPPI_RAM(ideal_state: i, ideal_state: s, word32: bd_ptr) 
states that the the content of the buffer descriptors in the queue pointed to 
by bd_ptr is equal in i and s.

bool: SAME_CPPI_RAM(ideal_state: i, ideal_state: s, word32: bd_ptr):
∀a  ∈ BD_ADDRESSES(bd_ptr).

i.nic.regs.CPPI_RAM(a – CPPI_RAM) =
s.nic.regs.CPPI_RAM(a – CPPI_RAM)

• bool: SAME_NIC_EXCEPT_CPPI_RAM(ideal_state: i, ideal_state: s) states
that i and s are equal except for the CPPI_RAM and the oracle state 
components.

bool: SAME_NIC_EXCEPT_CPPI_RAM(ideal_state: i, ideal_state: s) ≝
i.nic.dead_state = s.nic.dead_state  ∧ i.nic.interrupt = s.nic.interrupt ∧
i.nic.regs.DMACONTROL = s.nic.regs.DMACONTROL ∧
i.nic.regs.CPDMA_SOFT_RESET =

s.nic.regs.CPDMA_SOFT_RESET ∧
i.nic.regs.RX_BUFFER_OFFSET =

s.nic.regs.RX_BUFFER_OFFSET ∧
i.nic.regs.TX0_HDP = s.nic.regs.TX0_HDP ∧
i.nic.regs.RX0_HDP = s.nic.regs.RX0_HDP ∧
i.nic.regs.TX_TEARDOWN = s.nic.regs.TX_TEARDOWN ∧
i.nic.regs.RX_TEARDOWN = s.nic.regs.RX_TEARDOWN ∧
i.nic.regs.TX0_CP = s.nic.regs.TX0_CP ∧
i.nic.regs.RX0_CP = s.nic.regs.RX0_CP ∧
i.nic.init_p = s.nic. init_p ∧
i.nic.tx_p = s.nic.tx_p  ∧ i.nic.rx_p = s.nic.rx_p ∧
i.nic.tx_td_p = s.nic.tx_td_p  ∧ i.nic.rx_td_p = s.nic.rx_td_p.

• bool: UNUSED_TX_CPPI_RAM(ideal_state: i, word32: q) states that 
CPPI_RAM bytes outside the queue q are unused by the transmission 
process of the NIC according to its configuration in state i, and that buffer 
descriptors are unmodified until associated memory reads have been 
performed. q must be a sub-queue of i.oracle.tx0_active_queue, in order for
this statement to be true.
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bool: UNUSED_TX_CPPI_RAM(ideal_state: i, word32: q) ≝
∀s  ideal_state, ∈ π  ∈ NIC_execution(s), 0 ≤ k < length(π),

pa, v  word32.∈
SAME_NIC_EXCEPT_CPPI_RAM(i, s) ∧
SAME_CPPI_RAM(i, s, q)  ∧ πk →nic_memory_read(pa, v) πk+1

⇒
∃bd_ptr  word32.∈

bd_ptr  ∈ queue(q) ∧
pa[31:12]  ∈ allocated_tx_blocks(i, bd_ptr) ∧
[ 0 ≤ ∀ l ≤ k + 1. BD_EQ(i, πl, bd_ptr)].

• bool: UNUSED_RX_CPPI_RAM(ideal_state: i, word32: q) is similar as for 
transmission but with respect to reception.

bool: UNUSED_RX_CPPI_RAM(ideal_state: i, word32: q) ≝
∀s  ideal_state, ∈ π  ∈ NIC_execution(s), 0 ≤ k < length(π),

pa, v  word32.∈
SAME_NIC_EXCEPT_CPPI_RAM(i, s) ∧
SAME_CPPI_RAM(i, s, q)  ∧ πk →nic_memory_write(pa, v) πk+1

⇒
∃bd_ptr  word32.∈

bd_ptr  ∈ queue(q) ∧
pa[31:12]  ∈ allocated_rx_blocks(i, bd_ptr) ∧
[ 0 ≤ ∀ l ≤ k + 1. BD_EQ(i, πl, bd_ptr)].

The three main predicates that NIC_BDS rely on follow with a description of them.
CPPI_RAM_MODIFICATIONS_AND_MEMORY_ACCESSES states that the 
queues pointed to by tx0_active_queue and rx0_active queue after they have been 
advanced to the nearest non-released SOP buffer descriptor, captures all memory 
accesses, and also all CPPI_RAM modifications.

bool CPPI_RAM_MODIFICATIONS_AND_MEMORY_ACCESSES(ideal_state i) 
≝
∀s  ideal_state, ∈ π  ∈ NIC_execution(s), 0 ≤ k < length(π), pa, v  word32.∈

UNUSED_TX_CPPI_RAM(i, first_non_released_sop(i,
i.oracle.tx0_active_queue)) ∧

UNUSED_RX_CPPI_RAM(i, first_non_released_sop(i,
i.oracle.rx0_active_queue)) ∧

∀a  [0x4A102000, 0x4A104000).∈
πk.nic.regs.CPPI_RAM(a – CPPI_RAM) ≠
πk+1.nic.regs.CPPI_RAM(a – CPPI_RAM)
⇒
a  ∈ BD_ADDRESSES(i.oracle.tx0_active_queue) ∪

BD_ADDRESSES(i.oracle.rx0_active_queue).

This formula states that the transmission process of the NIC only uses the buffer 
descriptors beginning with the first non-released SOP buffer descriptor in the 
queue pointed to by tx0_active_queue. Similarly for the reception process. In 
addition, if a bit in CPPI_RAM is modified, then that bit belongs to a buffer 
descriptor in the queues pointed to by tx0_active_queue and rx0_active_queue. 
This include modifications made by the teardown processes.
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Since the content of CPPI_RAM is unspecified outside the buffer descriptors 
beginning with the first non-released SOPs in tx0_active_queue and 
rx0_active_queue, it is known that the memory accesses the NIC can make in its 
current configuration are independent of this CPPI_RAM area, and therefore that 
tx0_active_queue and rx0_active_queue and recv_bd_nr_blocks capture all 
memory accesses the NIC can make in its current configuration. Since the memory
accesses only depend on the buffer descriptors beginning at the first non-released 
SOP buffer descriptor of the queues, tx0_active_queue and rx0_active_queue can 
be updated to point to these buffer descriptors in the current state without missing 
any memory accesses.

To require that tx0_active_queue and rx0_active_queue point to buffer descriptors 
of the right type, TX_PTR and RX_PTR are used.

bool: TX_PTR(ideal_state: i) ≝
∀π  ∈ NIC_execution(i), 0 ≤ k < length(π).

[i.oracle.tx0_active_queue = 0 ⇒
 [¬∃pa, v  word32. ∈ πk →nic_memory_read(pa, v) πk+1]] ∧
[i .oracle.tx0_active_queue ≠ 0 ⇒
 [ 0 ≤ ∃ l ≤ length(π). ∀l ≤ m ≤ length(π).

cppi_ram_word(πm, i.oracle.tx0_active_queue + 12)[31] = 1 ∧
cppi_ram_word(πm, i.oracle.tx0_active_queue + 12)[29] = 0]].

bool: RX_PTR(ideal_state: i) ≝
∀π  ∈ NIC_execution(i), 0 ≤ k < length(π).

[i .oracle.rx0_active_queue = 0 ⇒
 [¬∃pa, v  word32. ∈ πk →nic_memory_write(pa, v) πk+1]] ∧
[i .oracle.rx0_active_queue ≠ 0 ⇒
 [ 0 ≤ ∃ l ≤ length(π). ∀l ≤ m ≤ length(π).

cppi_ram_word(πm, i.oracle.rx0_active_queue + 12)[31] = 1 ∧
cppi_ram_word(πm, i.oracle.rx0_active_queue + 12)[29] = 0]].

TX_PTR and RX_PTR states that for all states the NIC can produce by executing 
until it is idle from the current state i:

• If tx0_active_queue or rx0_active_queue is zero, then the NIC will not 
issue any memory reads or writes, respectively.

• If tx0_active_queue or rx0_active_queue is not zero, then a state will be 
reached from which the buffer descriptor pointed to by tx0_active_queue or
rx0_active_queue is a released SOP, and will continue to be so unless the 
CPU interacts with the NIC.

Since:

• CPPI_RAM_MODIFICATIONS_AND_MEMORY_ACCESSES requires the
buffer descriptors in the queues pointed to by tx0_active_queue and 
rx0_active_queue to capture all CPPI_RAM modifications and memory 
accesses, and

• the last modifications made by the NIC is to clear the ownership bit of the 
SOP buffer descriptor (the teardown processes of the NIC might not set the
SOP bit, but according to TD_STOP_NIC does this mean that no memory 
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accesses will occur and therefore will the assumptions in 
UNUSED_TX_CPPI_RAM and UNUSED_RX_CPPI_RAM be false which 
means that these two predicates are still true),

the only way for tx0_active_queue/rx0_active_queue to point to a SOP buffer 
descriptor that follows a set of buffer descriptors that have not been completely 
processed by the NIC, is if the SOP and EOP buffer descriptors of that set already 
have all their bits set as the NIC would write them in their post-processing. This is 
not an issue, since the critical property is to capture all memory accesses.

To actually catch memory accesses, it must be proved that if memory is accessed 
during NIC execution, then it is because of a transition with the label 
nic_memory_read or nic_memory_write:

πk →nic_memory_read(pa, v) πk+1 or πk →nic_memory_write(pa, v) πk+1.

Then it is known, that all memory accesses are actually captured by 
tx0_active_queue and rx0_active_queue.

NIC_BDS is defined as follows:

bool: NIC_BDS(ideal_state: i) ≝
CPPI_RAM_MODIFICATIONS_AND_MEMORY_ACCESSES(i) ∧
TX_PTR(i)  ∧ RX_PTR(i).

E.3.3 NO_BD_OVERLAPS

NO_BD_OVERLAPS:

• No buffer descriptor in the queue pointed to by tx0_active_queue is 
overlapping any buffer descriptor in the queue pointed to by 
rx0_active_queue.

• No buffer descriptor in the queue pointed to by tx0_active_queue is 
overlapping any other buffer descriptor in the queue pointed to by 
tx0_active_queue, and similarly for rx0_active_queue.

This property prevents the NIC from modifying CPPI_RAM in insecure ways.

bool: NO_BD_OVERLAPS(ideal_state: i) ≝
∀tx_q, rx_q  {word32}.∈

tx_q = queue(i, i.oracle.tx0_active_queue) ∧
rx_q = queue(i, i.oracle.rx0_active_queue) ∧
[∀tx_bd  ∈ tx_q, rx_bd  ∈ rx_q.

bd_addresses(tx_bd) ∩ bd_addresses(rx_bd) = ] ∅ ∧
[∀bd1, bd2  tx_q. ∈ bd1 ≠ bd2 ⇒

bd_addresses(bd1]) ∩ bd_addresses(bd2) = ] ∅ ∧
[∀bd1, bd2  rx_q. ∈ bd1 ≠ bd2 ⇒

bd_addresses(bd1]) ∩ bd_addresses(bd2) = ].∅

E.3.4 NIC_DATA_NO_EXEC_CONF

NIC_DATA_NO_EXEC_CONF:
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All buffer descriptors in the queues identified by tx0_active_queue and 
rx0_active_queue only access memory blocks that are within Linux RAM. In 
addition, for rx0_active_queue:

• Only non-executable data blocks are allowed to be accessible.

• The accessed memory addresses do not touch memory critical NIC 
registers. This property is implied by LINUX_PHYSICAL_MEMORY and 
IN_LINUX since data blocks are a part of Linux RAM and NIC registers 
are, of course, outside RAM.

This property prevents the NIC from accessing non-Linux memory, writing 
unsigned code and reconfiguring itself.

Auxiliary functions:

• {word20}: tx_block(ideal_state: i) returns the set of block indexes accessed 
by the queue pointed to by tx0_active_queue.

{word20}: tx_block(ideal_state: i)  {≝ bl |
∃bd_ptr  ∈ queue(i.oracle.tx0_active_queue).

bl  ∈ allocated_tx_blocks(i, bd_ptr)}.

• {word20}: rx_block(ideal_state: i) returns the set of block indexes accessed
by the queue pointed to by rx0_active_queue.

{word20}: rx_block(ideal_state: i)  {≝ bl |
∃bd_ptr  ∈ queue(i.oracle.rx0_active_queue).

bl  ∈ allocated_rx_blocks(i, bd_ptr)}.

bool: NIC_DATA_NO_EXEC_CONF(ideal_state: i) ≝
∀bl  word20.∈

(bl  ∈ tx_block(i)  ⇒ i.oracle.τ(bl)  {∈ L1, L2, D}) ∧
(bl  ∈ rx_block(i)  ⇒ i.oracle.τ(bl) = D  ∧ i.oracle.ρex(bl) = 0).

E.3.5 NIC_READ_ONLY

NIC_READ_ONLY:

Linux cannot execute NIC registers, nor write NIC registers that affect which 
memory accesses the NIC does.

This property prevents Linux from reconfiguring the NIC into an insecure state or 
executing unsigned code by interpreting the NIC registers (which the NIC can 
change as it wants) as instructions.

bool: NIC_READ_ONLY(ideal_state: i) ≝
∀bl  ∈ word20.

[i.oracle.τ(bl) = MN  ⇒ i.oracle.ρwt(bl) = 0] ∧
[i.oracle.τ(bl)  {∈ MN, N}  ⇒ i.oracle.ρex(bl) = 0].

E.3.6 CANNOT_DIE

CANNOT_DIE:

The NIC will never run into a dead state in its current configuration.
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This property ensures that the state of the NIC is defined, including after the NIC 
has made an arbitrary number of transitions. That is, the NIC is properly 
configured in its current state.

To make sure that the SOP, EOP and ownership bits are set as expected in the 
NIC_BDS predicate, and to also allow the oracle to update tx0_active_queue and 
rx0_active_queue correctly, the SOP, EOP and ownership bits must be correctly set
in all buffer descriptors given to the NIC. This gives CANNOT_DIE another 
purpose: It implies, due to the non-dead state property that the SOP, EOP and 
ownership bits are correctly set in all buffer descriptors that can currently be 
operated on by the NIC. However, this property is only with respect to the 
initialization of buffer descriptors, and it does not state anything about what 
tx0_active_queue and rx0_active_queue points to, and therefore are TX_PTR and 
RX_PTR still necessary in NIC_BDS.

For reception, the setting of the SOP and EOP bits is done correctly by the NIC. 
For transmission, the setting of those bits must be done by software. Therefore, the 
software must correctly set the ownership bit for all buffer descriptors, and for 
transmission correctly set SOP and EOP bits such that they correctly delimit the 
buffer descriptors of a frame. This forces Linux to add all buffer descriptors of 
each frame to transmit simultaneously by linking together those buffer descriptors 
and then appending them to the transmission queue. Linux uses exactly one buffer 
descriptor for each frame so this requirement is not a practical problem.

CANNOT_DIE implies that all buffer descriptors used by the NIC have correctly 
set SOP, EOP and ownership bits. Consider the following steps of the NIC model:

• If the SOP and EOP bits does not match in the transmit queue, then the NIC
enters a dead state (see transmit_step3 and transmit_step5).

• If the ownership bit is not set in SOP transmit buffer descriptors, then the 
NIC enters a dead state (see transmit_step3).

• If the SOP and EOP bits are not cleared and the ownership bit is not set in a
receive buffer descriptor, the NIC enters a dead state.

Since CANNOT_DIE states that the NIC never enters a dead state, none of these 
bits are incorrectly configured.

Another property that CANNOT_DIE implies is that the EOQ bit of a buffer 
descriptor in the queues pointed to by tx0_active_queue and rx0_active_queue is 
set if and only if that queue is emptied (see transmit_step3). Since EOQ bits are 
not allowed to be set by software, does this property enable a proof for that Lemma
V holds for executions of cppi_ram_handler. That reasoning is described in 
Subsection C.4.2.

To summarize, this predicate guarantees that the following fields are correctly 
initialized:

• Transmission buffer descriptors:

◦ SOP and EOP bits are matching.

◦ Ownership bits are set in SOP buffer descriptors.
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◦ The buffer offset field is less than the buffer length field of SOP buffer 
descriptors.

◦ The buffer length field is greater than zero, and the EOQ bit is cleared.

◦ The accessed memory region corresponds to RAM.

◦ The sum of the buffer length fields of a frame is equal to the packet 
length field of the SOP buffer descriptor.

• Reception buffer descriptors:

◦ The buffer offset, SOP, EOP, are EOQ fields are zero.

◦ The buffer length field is greater than zero, and the 
RX_BUFFER_OFFSET register.

◦ The ownership bit is cleared.

◦ Buffer descriptors not used by the currently processed received frame 
have their CRC flag set to zero.

◦ The accessed memory region corresponds to RAM.

bool: CANNOT_DIE(ideal_state: i) ≝
∀π  ∈ NIC_execution(i), 0 ≤ k ≤ length(π). ¬πk.nic.dead_state.

E.3.7 TD_STOP_NIC

TD_STOP_NIC:

If a buffer descriptor in the queues pointed to by tx0_active_queue and 
rx0_active_queue has the teardown bit set, then the corresponding NIC 
transmission or reception process is idle.

This property allows the oracle to securely clear tx0_active_queue and 
rx0_active_queue if a set teardown bit is encountered when updating 
tx0_active_queue and rx0_active_queue.

Auxiliary predicates:

• bool: TD_SET(ideal_state: i, word32: bd_ptr) returns true if and only if any
buffer descriptor in the queue pointed to by bd_ptr has the teardown bit set 
in the state i.

bool: TD_SET(ideal_state: i, word32: bd_ptr):
if bd_ptr = 0 then

return false
else

return cppi_ram_word(i, bd_ptr + 12)[27] = 1 ∨
TD_SET(i, cppi_ram_word(i, bd_ptr))

TD_STOP_NIC is defined as follows:
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bool: TD_STOP_NIC(ideal_state: i) ≝
∀π  ∈ NIC_execution(i), 0 ≤ k < length(π), pa, val  word32.∈

[TD_SET(i, tx0_active_queue) ⇒
 [¬∃pa, v  word32. ∈ πk →nic_memory_read(pa, v) πk+1]] ∧
[TD_SET(i, rx0_active_queue) ⇒
 [¬∃pa, v  word32. ∈ πk →nic_memory_write(pa, v) πk+1]].

E.3.8 RECV_BD_REF

RECV_BD_REF:

ρNIC is correct: ρNIC(bl) is equal to the number of buffer descriptors in the queue 
pointed to by rx0_active_queue that can access the block bl.

bool: RECV_BD_REF(ideal_state: i) ≝
∀bl  word20.∈

i.oracle.ρNIC(bl) = |{(bl, bd_ptr) |
bd_ptr  ∈ queue(i, i.oracle.rx0_active_queue) ∧
bl  ∈ allocated_rx_blocks(i, bd_ptr)}|.

For each physical block bl, it is paired with all buffer descriptors that are reachable 
from rx0_active_queue and accesses some byte in bl (the correctness of 
recv_bd_nr_blocks is established by RECV_BD_NR_BLOCKS). For each physical 
block bl, ρNIC(bl) is equal to the number of those pairs. That is, the number of 
receive buffer descriptors in the queue pointed to by rx0_active_queue that specify 
a data buffer that addresses at least one byte in the block represented by bl.

E.3.9 INIT_TD_IDLE

INIT_TD_IDLE:

• If initialized is true, then the NIC has been initialized properly and the NIC 
initialization process is idle.

• If tx0_hdp_initialized, rx0_hdp_initialized, tx0_cp_initialized or 
rx0_cp_initialized is true, then the NIC has completed its reset operation 
and the corresponding HDP or CP register has been zeroed.

• If tx0_teardingdown or rx0_tearingdown is false, then the corresponding 
NIC teardown process is idle.

This property gives the oracle an accurate view of the status of the initialization 
and teardown processes of the NIC. It helps the oracle reject NIC register write 
requests that could otherwise make the NIC enter a dead state.

INIT_TD_IDLE is defined as:
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bool: INIT_TD_IDLE(ideal_state: i) ≝
[i.oracle.initialized  ⇒ i.nic.init_p.init_complete  ∧ i.nic.init_p.init_step = 0] ∧
[i.oracle.tx0_hdp_initialized ⇒
 i.nic.regs.TX0_HDP = 0  ∧ i.nic.init_p.init_step  {1, 2}] ∈ ∧
[i.oracle.rx0_hdp_initialized ⇒
 i.nic.regs.RX0_HDP = 0  ∧ i.nic.init_p.init_step  {1, 2}] ∈ ∧
[i.oracle.tx0_cp_initialized
  ⇒ i.nic.regs.TX0_CP = 0  ∧ i.nic.init_p.init_step  {1, 2}] ∈ ∧
[i.oracle.rx0_cp_initialized ⇒
 i.nic.regs.RX0_CP = 0  ∧ i.nic.init_p.init_step  {1, 2}] ∈ ∧
[¬i.oracle.tx0_tearingdown  ⇒ i.nic.tx_td_p.transmit_teardown_step = 0] ∧
[¬i.oracle.rx0_tearingdown  ⇒ i.nic.rx_td_p.receive_teardown_step = 0].

This predicate makes it simple to analyze that the oracle handlers does not put the 
NIC in a dead state when writing certain registers, and it allows the oracle to 
correctly decide whether the NIC has been initialized or not. Actually, it must also 
be proved that these predicates prevent the NIC scheduler from scheduling these 
processes, in all NIC states that are produced by autonomous NIC transitions that 
follow the state i.

E.3.10 RX_BUFFER_OFFSET_DMACONTROL_ZERO

RX_BUFFER_OFFSET_DMACONTROL_ZERO:

The RX_BUFFER_OFFSET and DMACONTROL registers are zero.

This property prevents Linux from modifying RX_BUFFER_OFFSET to cause the 
NIC to enter a dead state during its processing of receive buffer descriptors, and it 
simplifies the NIC register write request handlers. It also prevents Linux from 
modifying the DMACONTROL register to prevent the NIC from entering a dead 
state.

The reason for having this predicate can be understood by considering the 
following scenario:

1. A buffer descriptor is added to the receive queue, which is accepted by the 
NIC register write request handlers since they check that the buffer length 
value of the added buffer descriptor is greater than the size of the 
RX_BUFFER_OFFSET register (otherwise the NIC enters a dead state).

2. Linux changes the RX_BUFFER_OFFSET register such that the new value 
is greater than or equal to the buffer length field of the previously added 
buffer descriptor.

3. The reception process of the NIC model detects that the buffer length field 
of the buffer descriptor added in step 1 is not greater than the 
RX_BUFFER_OFFSET register. This makes the NIC enter a dead state.

A solution to prevent this scenario of enabling the NIC to enter a dead state is to 
force the RX_BUFFER_OFFSET register to always be zero. This also allows 
is_data_buffer_secure (used as an auxiliary function to determine whether a buffer 
descriptor only accesses legal memory and does not cause a transition to a dead 
state) to only check if the buffer length field is greater than zero.
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Since Linux does not use any other value than zero for the RX_BUFFER_OFFSET 
register, is this not a practical problem. The modeling of the DMACONTROL 
register is discussed in Section B.2.

bool: RX_BUFFER_OFFSET_DMACONTROL_ZERO(ideal_state: i) ≝
 i.nic.regs.RX_BUFFER_OFFSET = 0  ∧ i.nic.regs.DMACONTROL = 0.

E.3.11 ACTIVE_CPPI_RAM

ACTIVE_CPPI_RAM:

α is correct: α(w) is true if and only if there is a buffer descriptor in the queues 
pointed to by tx0_active_queue and rx0_active_queue that occupies the wth 32-bit 
word of CPPI_RAM.

This property allows efficient checking of whether a CPPI_RAM write request is 
accessing a used part of CPPI_RAM or if a new queue is overlapping a queue that 
is already in use by the NIC. Therefore can α be used when deciding whether a 
CPPI_RAM write request shall be accepted or rejected.

bool: ACTIVE_CPPI_RAM(ideal_state: i) ≝
∀bd_ptr  word32.∈

[bd_ptr  ∈ queue(i, i.oracle.tx0_active_queue) ∪
queue(i, i.oracle.rx0_active_queue)

 ⇒
 i.oracle.α((bd_ptr – CPPI_RAM) >> 2) = true ∧
 i.oracle.α((bd_ptr – CPPI_RAM + 4) >> 2) = true ∧

  i.oracle.α((bd_ptr – CPPI_RAM + 8) >> 2) = true ∧
 i.oracle.α((bd_ptr – CPPI_RAM + 12) >> 2) = true]
∧
Σ 0 ≤ j < 2048  ∧ i.oracle.α(j) = true 1 =
|queue(i, i.oracle.tx0_active_queue)  ∪ queue(i, i.oracle.rx0_active_queue)|  4.⋅

For all buffer descriptors in the queues pointed to by tx0_active_queue and 
rx0_active_queue, all of their four words are marked as true by α. Since the words 
are word aligned (by FINITE_WORD_ALIGNED_CPPI_RAM_QUEUE) they are 
logically right shifted two bits. Also, it is ensured that only these buffer descriptors 
are marked as true by making sure that the number of CPPI_RAM words w in 
CPPI_RAM that satisfies α(w) = true is equal to the number of buffer descriptors in
the queues pointed to by the tx0_active_queue and rx0_active_queue multiplied by 
four (each buffer descriptor consists of four words). BD_NO_OVERLAPS, implies 
that no buffer descriptors overlaps, and therefore is this equation is correct.

E.4 State Component Dependences
The predicates in S depend on the following state components of the ideal state i:

• FINITE_WORD_ALIGNED_CPPI_RAM_QUEUES: 
i.oracle.tx0_active_queue, i.oracle.rx0_active_queue and 
i.nic.regs.CPPI_RAM.
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• NIC_BDS: i.oracle.tx0_active_queue, i.oracle.rx0_active_queue, 
i.oracle.recv_bd_nr_blocks and i.nic.

• NO_BD_OVERLAPS: i.oracle.tx0_active_queue, 
i.oracle.rx0_active_queue and i.nic.regs.CPPI_RAM.

• NIC_DATA_NO_EXEC_CONF: i.oracle.tx0_active_queue, 
i.oracle.rx0_active_queue, i.oracle.τ, i.oracle.ρex, 
i.oracle.recv_bd_nr_blocks and i.nic.regs.CPPI_RAM.

• NIC_READ_ONLY: i.oracle.ρwt, i.oracle.ρex and i.oracle.τ.

• CANNOT_DIE: i.nic.

• TD_STOP_NIC: i.nic.

• RECV_BD_REF: i.oracle.rx0_active_queue, i.oracle.ρNIC, 
i.oracle.recv_bd_nr_blocks and i.nic.regs.CPPI_RAM.

• INIT_TD_IDLE: i.oracle.initialized, i.oracle.tx0_hdp_initialized, 
i.oracle.rx0_hdp_initialized, i.oracle.tx0_cp_initialized, 
i.oracle.rx0_cp_initialized, i.oracle.tx0_tearingdown, 
i.oracle.rx0_tearingdown and i.nic.

• RX_BUFFER_OFFSET_DMACONTROL_ZERO: 
i.nic.regs.RX_BUFFER_OFFSET and i.nic.regs.DMACONTROL.

• ACTIVE_CPPI_RAM: i.oracle.tx0_active_queue, 
i.oracle.rx0_active_queue, i.oracle.α and i.nic.regs.CPPI_RAM. 

• WT_EX_REF: i.oracle.ρwt, i.oracle.ρex, i.oracle.τ, and the content of L1 and 
L2 blocks.

• SOUND_PT: i.oracle.ρwt, i.oracle.ρex, i.oracle.τ, i.oracle.GI, i.oracle.sign, 
and the content of L1, L2, and executable D blocks.

• CONST_PT: i.oracle.ρwt, i.oracle.τ.

• SOUND_MMU: i.oracle.τ, i.cpu.cp15.TTBR0, i.cpu.cp15.DACR, and the 
content of L1, L2, hypervisor code and monitor code blocks.

• IN_LINUX: i.oracle.τ, content of L1 and L2 blocks, i.oracle.cpu.uregs.r15, 
i.cpu.cp15.TTBR0, i.cpu.cp15.DACR[5:4] and i.cpu.sregs.CPSR[4:0].
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Appendix F Sub-Level Lemmas
This appendix motivates the sub-level lemmas. Some of them are not used by the 
top-level lemmas but by other sub-level lemmas.

F.1 CPPI_RAM Write Lemma
The CPPI_RAM Write Lemma is:

If a trace consisting only of autonomous NIC transitions starts from an ideal state 
that satisfies S and writes a bit of a buffer descriptor in CPPI_RAM, then is the 
meaning of that write for that buffer descriptor in accordance with the NIC 
specification.

Reasoning: Assume that S holds. CPPI_RAM can either be changed by the NIC 
when it is post-processing buffer descriptors or executes the teardown processes, or
by issuing memory write request to NIC registers. The latter form of CPPI_RAM 
writes cannot occur since the NIC enters a dead state before such memory write 
requests are issued. Therefore it is enough to reason about CPPI_RAM 
modifications due to post-processing of frames and teardown operations.

Because NIC_BDS and NO_BD_OVERLAPS hold, the buffer descriptors in the 
queues pointed to by tx0_active_queue and rx0_active_queue are the only ones that
are potentially in use by the NIC and they do not overlap. This implies that when 
the NIC manipulates a buffer descriptor, it is only manipulating one buffer 
descriptor and that modification is because of the operation of the NIC. The NIC 
only manipulates buffer descriptors when post-processing transmitted or received 
frames or because a teardown process has made progress. That is, the modification 
is consistent with the NIC specification.

For instance, if a teardown bit is set in a buffer descriptor, then that bit is set 
because of a completed teardown operation, and not because some other bit was set
in some other buffer descriptor because the two buffer descriptors overlapped.

F.2 Constant Memory Lemma
The Constant Memory Lemma is:

If an execution trace only consists of autonomous NIC transitions and emanates 
from an ideal state that satisfies S, then does no transition in that trace modify the 
content of an L1, L2 or executable D block, or hypervisor or monitor memory.

Reasoning: The CPPI_RAM Write Lemma and NIC_BDS imply that all memory 
writes are to addresses as specified by the buffer descriptors in the queue pointed to
by rx0_active_queue. By NIC_DATA_NO_EXEC_CONF are those addresses only 
referring to non-executable D blocks, where ρex is correct according to 
WT_EX_REF. According to LINUX are hypervisor and monitor memory blocks 
typed as .⊥  Since a block can only have one type, does this imply that the NIC 
cannot change the content of L1, L2 and executable D blocks, or hypervisor or 
monitor memory.
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F.3 RM and IM Initially Related Lemma
The RM and IM Initially Related Lemma is:

Each initial state of the real model is related to some initial state of the ideal 
model:

∀r  ∈ RM.IS. ∃i  ∈ IM.IS. r R i.

A description for how this lemma can be proved is as follows:

1. For a state r  ∈ RM.IS to be related to a state i  ∈ IM.IS the following must 
hold:

r R i  ∧ S(i)  ∧ NIC_INIT(i)  ∧ ORACLE_INIT(i)  ∧ Linux_exec(i).

The last four conjuncts are from the definition of IM.IS. By expanding the 
definition of R and S, a new predicate RM_INIT(r) can be defined that is 
equivalent to the above formula, and which formalizes what r must satisfy 
in order to be related i:

RM_INIT(real_state: r) ≝
CPU_EQ(r, i)  ∧ MEMORY_EQ(r, i)  ∧ NIC_EQ(r, i) ∧
HM_O_EQ(r, i) ∧
CPU_MEMORY(i)  ∧ NIC_INIT(i)  ∧ ORACLE_INIT(i)  ∧

Linux_exec(i).

The predicate NIC of S is removed since the state components that NIC 
depends on are required to have specific values by NIC_INIT and 
ORACLE_INIT.

2. Let START be the predicate that states which state the CPU and the NIC are
in, and what the content of memory is, when the real physical system is 
powered on. The NIC shall have the values as described by the comments 
in the definition of nic_state in Section B.3.

3. Let {real_state}: boot_execution(real_state: r) be the function that 
computes a set of states of type real_state. A state r'  ∈ boot_execution(r) if 
and only if there exists a trace π that has been generated by the transition 
rules that defines the real model starting from a state r = π0 and there exists 
n ≥ 0 such that πn = r'  [ 0 ≤ ∧ ∀ k < n. ¬Linux_exec(πk)]  ∧ Linux_exec(πn) 
holds.

4. Let BOOT be the predicate that states that the boot code execution of the 
hypervisor is correct:

BOOT  ≝ ∀r, r'  ∈ real_state.
START(r)  ∧ r'  ∈ boot_execution(r)  ⇒ RM_INIT(r').

The assumption of this predicate requires that the state:

• r corresponds to a state where the physical computer has just been 
turned on, and

• r' is the first state in a system execution where Linux is to execute its 
first instruction.
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This follows the intuitive description of the informal definition of RM.IS. 
The quantifier and the conclusion require that all initial states satisfy 
RM_INIT, and all initial states in RM.IS are related to an initial state of the 
ideal model.

If the predicate BOOT can be proved, then all initial states of the real model are 
related to some initial state of the ideal model, since RM_INIT implies that the state
r' is related to some ideal state i'  ∈ IM.IS. BOOT can be proved by computing the 
weakest precondition of RM_INIT in BAP with respect to the initialization code of 
the hypervisor and then proving in HOL4 that START implies that weakest 
precondition, provided that the initialization code does not interact with the NIC, 
as is done in [68]. However, the initialization code of the hypervisor initializes the 
NIC. Perhaps this can be solved by verifying the NIC interaction in HOL4 and the 
rest with BAP.

F.4 MMU Lemma
The MMU Lemma is:

If r R i holds for real and ideal model states r and i, then does the MMU operate 
identically in the states r and i:

∀r  ∈ RM.S, i  ∈ IM.S.
r R i
⇒
∀pl  {∈ PL0, PL1}, va  ∈ word32, ap  {∈ rd, wt, ex}.

mmu(r, pl, va, ap) = mmu(i, pl, va, ap).

Reasoning: The operation of the mmu depends on TTBR0, DACR, CPSR, and the 
page tables in memory. According to Lemma II, S(i) holds:

• SOUND_MMU: TTBR0 points to an L1 block.

• SOUND_PT: Second-level links in L1 blocks point to L2 blocks.

• IN_LINUX: Blocks of type L1 and L2 are in Linux memory.

Since R requires that TTBR0, DACR, CPSR and Linux memory to be equal in r and
i, the MMU operates identically in r and i.

F.5 Exceptions Preserve R Lemma
The Exceptions Preserve R Lemma is:

If r R i  Linux_state∧ (r) holds for real and ideal model states r and i, and r raises 
an exception in its next CPU transition, then i will also raise an identical 
exception in its next CPU transitions and the generated states are related by R:

∀r, r'  ∈ RM.S, i  ∈ IM.S.
r R i  ∧ Linux_state(r)  ∧ r →EXC r'  ⇒ ∃i'  ∈ IM.S. i →EXC i'  ∧ r' R i'.

Reasoning: Since r R i  Linux_state∧ (r) holds, does it mean that both r and i are in 
non-privileged mode in which the CPUs in RM and IM behave identically by their 
definitions. There are six different exceptions to consider. First are FIQ and IRQ 
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interrupts considered. FIQ interrupts cannot occur and only the NIC can raise IRQ 
interrupts. Since r R i holds, are the nic state components identical in r and i, 
meaning that both have their interrupt flag raised. Since R requires the CPSR 
registers to be equal between r and i, does both CPUs have the same values of the I
flag and hence both CPUs take the interrupt exception which modifies the states r 
and i identically.

The next two exceptions to consider are supervisor call and undefined instruction 
exceptions. These exceptions are raised due to specific instruction executions in 
non-privileged mode. By the MMU Lemma will the MMUs in r and i operate 
identically, and since R requires the program counters to be equal, the MMUs will 
compute the same results. Since a memory abort exception did not occur (since it is
assumed that a supervisor call or undefined instruction exception occurred), did 
mmu return a value pa  word32. This means that the MMU succeeded with its ∈
translation without any memory aborts. Therefore is it the instruction located at 
physical address pa that determines the outcome of the next transitions from r and 
i.

It is now reasoned which blocks pa can potentially belong to. NIC_READ_ONLY 
(cannot execute NIC registers according to ρex), WT_EX_REF (correct ρex with 
respect to L1 and L2 page tables), SOUND_PT (L1 second-level entries point to L2
blocks), SOUND_MMU (the MMU uses an L1 block as first-level page table), and 
IN_LINUX (unmapped or no access permissions to  blocks in ⊥ L1 and L2 blocks), 
imply that pa does not belong to a block of type , ⊥ MN or N. That is, pa belongs 
to an L1, L2 or D block.

By IN_LINUX does these blocks belong to Linux memory, which in turn is equal in
r and i by R. R also requires user mode registers and CPSR to be equal in r and i, 
which implies that the same instructions with the same operands will be tried to be 
executed in the next operations from the states r and i. This together with equal 
operations of the CPUs in non-privileged mode cause these instructions to raise the
same exceptions which in turn will modify the state components identically.

Next to consider are prefetch abort exceptions. Since R requires equality of the 
program counters and CPSR, and by the MMU Lemma, instructions at the same 
locations are tried to be fetched with the same access permissions making the 
MMUs operate identically. Therefore does the same exceptions occur when r and i 
shall perform their next CPU transitions, which modify the states identically.

The final exceptions to consider are data aborts. Faults that are not related to access
permissions (like MMU translation or memory system errors) are reasoned as in 
the case of prefetch abort exceptions. Therefore is focus on memory read and write
access violations. As reasoned in the case of supervisor call and undefined 
instruction exceptions, will the next transitions from r and i try to execute the same
CPU instructions with the same operands. This and the MMU Lemma means that 
these instructions will make the same memory references upon which the MMUs 
will operate identically in r and i. Therefore will the same exceptions be raised and 
r and i will be modified identically.

Irrespectively of which kind of exception that occurs in the transition from r, the 
next CPU transition from i will cause the same exception, and these exceptions 

275



will modify the state components of r and i identically, implying that r' R i' holds 
since r R i holds.

F.6 No NIC Interrupt Assumption
The No NIC Interrupt Assumption is not a lemma but an assumption about the 
exception handlers of the oracle:

The exception handlers of the oracle does not clear the I flag of CPSR until the 
CPU is returned to Linux.

F.7 HVM NIC Register Dependence Only Lemma
The HVM NIC Register Dependence Only Lemma is:

Consider a sub-trace π[j:m] that corresponds to a transition πj ⇝real πm of any 
exception handler execution of the hypervisor and the monitor, where πj is related 
by R to some i  ∈ IM.S, then in this trace, excluding NIC register accesses:

• The transitions of the hypervisor and the monitor depend only on resources
not modified by the NIC.

• The transitions of the NIC depend only on resources not modified by the 
hypervisor and the monitor.

• The resources that the hypervisor and the monitor modify are disjunct from 
the resources that the NIC modify.

Reasoning: Apart from NIC registers, the hypervisor and monitor and the NIC can 
only affect each other through memory and interrupts. By the No NIC Interrupt 
Assumption, the NIC cannot affect the CPU through interrupts.

Consider how the NIC accesses memory. First of all, the NIC does not depend on 
memory content (see the NIC model function memory_request_byte_reply which 
does not read the received value of the memory read request reply). Let r be the 
start state of the handler trace and i the related state. Since S(i)  ∧ r R i holds, the 
following is known about the state r due to the equality of the cpu, Linux memory, 
nic, and hypervisor plus monitor and oracle state components of r and i:

• The CPPI_RAM Write Lemma, which relies on NIC_BDS and 
NO_BD_OVERLAPS, implies that the NIC modifications to CPPI_RAM 
can never change the memory that the NIC is configured to access.

• NIC_DATA_NO_EXEC_CONF (NIC access only non-executable D blocks 
according to ρex and τ), WT_EX_REF (ρex is correct with respect to L1 and 
L2 blocks), SOUND_PT (second-level entries of L1 blocks only point to L2
blocks), and SOUND_MMU (TTBR0 point to L1 block) imply that that the 
NIC can only write non-executable D blocks, of which NIC registers do not
belong to according to IN_LINUX. This prevents the NIC from 
reconfiguring itself or writing hypervisor or monitor memory.

The NIC register write request handlers are the only handlers that write NIC 
registers, and they never break any of the predicates in the bullets above. The 
reason is that the queues pointed to by tx0_active_queue and rx0_active_queue are 
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written before the HDP registers are written or when those queues are extended by 
CPPI_RAM writes, and they never write state components that the 
CPU_MEMORY predicate depends on. This is an unmotivated additional lemma 
that is based on investigation of the oracle handlers tx0_hdp_handler, 
rx0_hdp_handler and cppi_ram_handler, which are the only handlers that 
configures which memory the NIC can access. The conclusion is that the NIC is 
always configured to only write non-executable D blocks.

Furthermore, S(i)  ∧ r R i also imply:

• SOUND_PT and SOUND_MMU states that the MMU only uses L1 and L2 
blocks, and that the memory of the hypervisor and the monitor is mapped to
its allocated RAM area. Since τ only maps each block to one type, L1 and 
L2 blocks are distinct from NIC writable D blocks.

• IN_LINUX states that L1 and L2 blocks are a part of Linux RAM, and 
hence they cannot be represented by NIC registers.

These two bullets mean that NIC cannot change the virtual to physical address 
mapping of the hypervisor and the monitor.

Consider now how the exception handlers access memory. Apart from their own 
memory do the memory mapping request handlers also access L1, L2 and D 
blocks. Before createL1/createL2 sets a block as L1/L2 it must be non-writable by 
the NIC, and it is after that, that they and the other memory mapping request 
handlers read or write L1/L2 blocks. Also, the memory mapping request handlers 
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Figure 47: How the hypervisor, the monitor and the NIC access memory. Each 
circle represents one memory region. It is shown that the hypervisor and monitor 
only read data that cannot be modified by the NIC, and that the hypervisor and 
monitor and the NIC write disjunct parts of memory. Also, the operation of the NIC
does not depend on memory content. These properties imply that the hypervisor 
and monitor and the NIC cannot affect each other through memory.
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NIC reads NIC writes



require the D blocks to be non-writable by the NIC in order to validate their 
signatures. Hence, the exception handlers only depend on and write hypervisor, 
monitor, L1, L2, and non-NIC writable D blocks.

Now it has been reasoned that:

• The transitions of the NIC do not depend on memory content, and it only 
writes non-executable D blocks.

• The hypervisor and the monitor does only depend on and write hypervisor, 
monitor, L1, L2, and non-NIC writable D blocks.

These two properties are illustrated in Figure 26 and imply:

• The NIC is independent of memory that the hypervisor and monitor can 
write.

• The hypervisor and monitor are independent of memory that the NIC can 
write.

• The hypervisor and monitor and the NIC write disjunct parts of memory.

Since memory is the only way for the hypervisor plus monitor and the NIC to 
affect each other, except for NIC registers (which are excluded by assumption) and
interrupts (which are blocked), does this conclude the reasoning.

F.8 CPU and NIC Rescheduling Lemma
The CPU and NIC Rescheduling Lemma is:

Consider a sub-trace π[j:m] that corresponds to a transition πj ⇝real πm of an 
exception handler execution of the hypervisor and the monitor, where πj R i holds 
for some i  IM.S. Assume π∈ [j:m] contains a consecutive sequence of two 
transitions. The first transitions is a CPU transition that is not the first or the last 
transition of the handler trace and which does not access a NIC register. The 
second transition is an autonomous NIC transition. That is πk →CPU πk+1 →NIC πk+2. 
The implication of this is that there exists a hypervisor and monitor handler sub-
trace υ[j:m] such that the order of the operations of these two transitions are 
reversed, υk →NIC υk+1 →CPU υk+2, with all states in υ[j:m] being equal to the 
corresponding states in π[j:m], except for πk+1 and υk+1:

∀π  ∈ RM.Π, i  ∈ IM.S, a, e, a < b < e – 1.
π[a] ⇝real π[e] ∧
CPUL(π[a])  ∧ CPUL(π[e])  ∧ EHT(π, a, e) ∧
π[a] R i ∧
label(π, b) = CPU  ∧ label(π, b+1) = NIC
⇒
∃π′  ∈ RM.Π.

π′[a] ⇝real π′[e]  ∧ label(π, b) = NIC  ∧ label(π, b+1) = CPU ∧
π[a:b] = π′ [a:b]  ∧ π[b+2:e] = π′ [b+2:e].

and vice versa where the order of the CPU and NIC transitions are reversed.

Reasoning: First of all, the first and the last transitions of the trace, corresponding 
to exception and exception return from and to Linux, are not included which 
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implies j < k < k + 2 < m. A motivation will now follow for how υ can be 
constructed:

1. Set υ0 = π0.

2. Apply the same transition rules that were used to generate all transitions in 
π[0:k] in the same order in υ[0:k]. This is possible because all of these 
states are equal since the first states are equal and the same transition rules 
can be used to generate the same states (including non-deterministic 
transition rules by choosing the same non-deterministic value as when the 
transition rule was applied in π).

3. By the HVM NIC Register Dependence Only Lemma and because the CPU 
transition does not access a NIC register, do the two CPU and NIC 
transitions operate independently. Figure 27 illustrates this reasoning. This 
means that:

• The transition rule that was used to generate the NIC transition from the
state πk+1 will also be applicable on the state πk to generate the state υk+1, 
and it will modify the state identically as when producing πk+2.

• The transition rule that was used to generate the CPU transition from 
the state πk will also be applicable on the state υk+1 to generate the state 
υk+2, and it will modify the state identically as when producing πk+1.

Since the two transition rules do not write common state components, is 
υk+2 equal to πk+2.

4. Repeat step 2 from υk+2 until υm is reached.
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Figure 48: The independence of CPU and NIC transitions when the CPU does not 
access a NIC register. The real state is represented as nine state components (as an
example). An arrow from a state component vi to a state component vj means that 
the operation of the next transition performed by the CPU or the NIC depends on 
the value of vi when modifying the value of vj. The state component dependencies 
of the next transitions of the CPU and the NIC are represented by continuous and 
dashed arrows, respectively. The next transition of the CPU depends on v0, v2 and 
v5 and modifies v0, v1 and v4, and the next transition of the NIC depends on v5 and 
v8 and modifies v6 and v8. Since the CPU and NIC transitions do not access 
common state components, except for v5 which is constant, does it not matter in 
which order the CPU and NIC transitions occur.

v0
v1 v2 v3 v4 v5 v6 v7 v8
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The same reasoning holds when the NIC transition precedes the CPU transition in 
π.

What remains to be shown is that ¬Linux_state(υk+1) holds in order to conclude that
υj ⇝real υm holds. There are two cases depending on the order of the CPU and NIC 
transitions:

• πk →CPU πk+1 →NIC πk+2 and υk →NIC υk+1 →CPU υk+2: Since NIC transitions do 
not modify CPSR or DACR, and since ¬Linux_state(πk)  ∧ πk = υk holds, 
¬Linux_state(υk+1) also holds.

• πk →NIC πk+1 →CPU πk+2 and υk →CPU υk+1 →NIC υk+2: Since the CPU transition 
does not correspond to an exception return transition that returns control to 
Linux, which are the only transitions that produce states that satisfy 
Linux_state, and since ¬Linux_state(πk)  ∧ πk = υk holds, Linux_state(υk+1) 
holds.

F.9 NIC Preserves R Lemma
The NIC Preserves R Lemma is:

If a real model state r is related by R to an ideal model state i, and r makes an 
autonomous NIC transition to the state r', then i can make a corresponding 
transition to the state i' such that r' and i' are related by R:

∀r, r′  ∈ RM.S, i  ∈ IM.S. r R i  ∧ r →NIC r′  ⇒ ∃i′  ∈ IM.S. i →NIC i′   ∧ r′ R i′.

Reasoning: The definition of the autonomous NIC transition rules of the real and 
ideal models are identical and they only depend on and operate on the nic state 
components which are required to be equal by R. This, together with the 
assumption that r is related to i, imply that the corresponding transition rule of the 
ideal model:

• is also applicable to i, and

• can transform i to i' in an identical way as r was transformed into r', by 
using the same non-deterministic value, if needed.

Since r and i are related by R, and the transition rules manipulate the related state 
components identically, r' and i' are also related by R.

F.10 Exception Handlers Implementations 
Assumption
The Exception Handlers Implementations Assumption states:

The exception handlers of the hypervisor and the monitor implement the design of 
the exception handlers of the oracle:

∀r  ∈ RM.S, i  ∈ IM.S.
r R i  ∧ mode(r) ≠ usr
⇒
[∀i'  ∈ IM.S. i →oracle i'  ⇒ ∃r'  ∈ RM.S. r'  ∈ handler_execution(r)  ∧ r' R i'] ∧
[∀r'  ∈ RM.S. r'  ∈ handler_execution(r)  ⇒ ∃i'  ∈ IM.S. i →oracle i'  ∧ r' R i'].
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What follows is a reasoning of why this statement should be possible to prove, 
provided that the implementation follows the design: Let consider the first conjunct
in the conclusion first. Since the oracle always takes control from privileged states 
and returns the CPU in non-privileged mode, the cpu state component in the state i 
is in the first state after an exception has occurred and i' is the result of the 
execution of an oracle exception handler.

Let handler_execution return the set of states that satisfy Linux_state in the sub-
traces that occur when only CPU transitions are made from a given state where the 
cpu state component is in the first state after an exception (this includes NIC 
transitions due to NIC register accesses but no autonomous NIC transitions). 
Because r R i holds, the cpu state component of r is also in the first state after an 
exception has occurred. This means that r is the state that the exception handlers of
the hypervisor and monitor start their execution from, and r' where they end their 
execution. The only non-determinism in the oracle transition and the hypervisor 
and monitor exception handlers is because of NIC register writes to the HDP and 
CP registers. The nic state components are identical in r and i since they are 
related, and because of  the assumption that the hypervisor and monitor operations 
follow the oracle design, do the hypervisor and the monitor perform the same 
operations as the oracle and all non-deterministic operations of the NIC that can be
made in the oracle transition can also be made in the sub-trace of the exception 
handlers of the hypervisor and the monitor. Therefore are the end state r' and i' 
related.

The second conjunct in the conclusion is now considered. handler_execution is 
undefined for states in which the cpu state component is not in its first state after 
and exception. Therefore does the exception handlers of the hypervisor and the 
monitor start their execution from r. Since the cpu state component of r is in the 
first after an exception and r is related to i, is the cpu state component of i also in 
the first state after an exception. This means that the oracle can perform a transition
from i into some state i'. The reasoning now is as for the other conjunct in the 
conclusion: The hypervisor and the monitor perform the same operations as the 
oracle, and the NIC can perform the same non-deterministic operations in both 
models. Therefore can the oracle modify the state i to produce the state i' in a 
corresponding way as the hypervisor and the monitor generates the state r' from r.

F.11 Exception Handlers Preserve R Lemma
If υ[k:m] corresponds to a handler execution in the real model, where:

• υk is the start state, in which the CPU has not advanced since the last 
exception,

• υm is the end state, in which Linux is given the CPU after exception return 
(first state following υk that satisfies Linux_state),

• no autonomous NIC transitions occur in υ[k:m], and

• υk R νk holds, where νk is a state in the ideal model,

then, there exists an oracle transition in the ideal model from νk, νk →oracle νk+1, such
that R relates υm and νk+1.
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Reasoning: Using the notation in the Exception Handlers Implementations 
Assumption, υk = r and υm = r', and hence υm  ∈ handler_execution(υk). Since υk R νk 
holds and the CPU is in non-privileged mode, can that assumption be used to 
conclude that ∃νk+1  ∈ IM.S. νk →oracle νk+1  ∧ υm R νk+1 holds.

F.12 RLM Simulates ILM
The following three subsections motivates why transitions in ⇝ideal should be 
possible to be matched by transitions in ⇝real, with a minor modification to the 
definition of transitions in ⇝real. That it, the roles of ⇝ideal and ⇝real in Lemma V are
swapped.

F.12.1 Linux Transitions

Transitions in RLM, r ⇝real r', that correspond to non-privileged CPU transitions, 
can be matched by corresponding transitions in ILM, i ⇝ideal i', since the CPUs in 
RM and IM are deterministic, and non-privileged ILM transitions can match non-
privileged RLM transitions. This gives:

∀i, i'  ∈ ILM.S, r  ∈ RLM.S. i ⇝ideal i'  ∧ r R i  ⇒ ∃r'  ∈ RLM.S. r ⇝real r'  ∧ r' R i'.

F.12.2 Exception Handler Transitions

If the definition of ⇝real is changed to allow autonomous NIC transitions after 
exception returns, (being equal to the definition of ⇝ideal), then privileged 
transitions in RLM and ILM can match each other:

• ∀r, r'  ∈ RLM.S, i  ∈ ILM.S.
r ⇝real r'  ∧ r R i  ⇒ ∃i'  ∈ ILM.S. i ⇝ideal i'  ∧ r' R i'.

• ∀i, i'  ∈ ILM.S, r  ∈ RLM.S.
i ⇝ideal i'  ∧ r R i  ⇒ ∃r'  ∈ RLM.S. r ⇝real r'  ∧ r' R i'.

The first property is proved as in Subsection 7.4.4.3 but where υ[j:m] has trailing 
autonomous NIC transitions after the exception return transition. These transitions 
need not be reordered, and when constructing ν[j:l], a fourth step is added that 
simply repeats the second step for the trailing autonomous NIC transitions.

The second property is proved as follows. The given transition i ⇝ideal i that 
corresponds to a sub-trace ν[j:l] of the following shape:

ν[j:l] = νj →EXC νj+1 →NIC … →NIC νk →SPEC νk+1 →NIC … →NIC νl

can be matched by the real handler subtrace:

π[j:m] = πj →EXC πj+1 →NIC … →NIC πk →CPU … →CPU πh →RET πh+1 →NIC … →NIC πm,

where πk →CPU … →CPU πh →RET πh+1 matches νk →SPEC νk+1 without any 
intermingled NIC transitions. An intuitive reasoning follows. Since non-privileged 
execution of the real and ideal CPUs are identical and that execution is 
deterministic, both traces start with the same exception, which preserves R (i.e. the 
reverse of the Exceptions Preserve R Lemma; see non-privileged CPU transitions 
above). Then both traces are constructed by applying the same NIC transition rules 
in the same order, each of which preserves R (i.e. the reverse of the NIC 
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Transitions Preserve R Lemma; see for autonomous NIC transitions below). The 
oracle and the CPU handler transitions perform the same operations and also 
preserve R (i.e. there reverse of the Exception Handlers Preserve R Lemma which 
can be proved by using the second conjunct in the conclusion of the Exception 
Handlers Implementations Assumption). The second sequence of the autonomous 
NIC transitions are matched in the same way as the first sequence.

F.12.3 NIC Transitions

The motivation behind the NIC Preserves R Lemma also holds for the case when 
the ideal model makes a NIC transition and the real model shall make a 
corresponding transition to preserve R. Then, since Linux_state(i)  ∧ r R i holds, 
and that NIC transitions do not modify CPSR or DACR, Linux_state(r)  ∧
Linux_state(r') holds. This follows the definition of ⇝real, which gives:

∀i, i'  ∈ ILM.S, r  ∈ RLM.S. i ⇝ideal i'  ∧ r R i  ⇒ ∃r'  ∈ RLM.S. r ⇝real r'  ∧ r' R i'.
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